Supporting Information

Reduced-Amide Inhibitor of Pin1 Binds in a Conformation Resembling a Twisted-Amide Transition State[†]

Guoyan G. Xu;¹ Yan Zhang;^{*2} Ana Y. Mercedes-Camacho;¹ Felicia A. Etzkorn^{*1}

¹Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061; ²Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712

*Corresponding authors: Telephone: 540-231-2235, Fax: 540-231-3255, E-mail:

fetzkorn@vt.edu, Telephone: 512-471-8645, Fax: 512-471-8696; E-mail:

jeszhang@mail.utexas.edu.

Synthesis of Reduced Amide Inhibitors. The key step in the synthesis of **1** was selective reduction of the amide in the presence of both an ester and a carbamate (Scheme S1).(*1*, *2*) Fmoc–Ser(*t*-Bu)–OH was coupled to H–Pro–O*t*-Bu to form amide **5** using1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) (Scheme 1). Amide **5** was reduced selectively with borane to form the reduced amide **6**. Both *t*-Bu groups were removed with $BF_3 \cdot Et_2O$ to form intermediate **7**, although the deprotection has only been reported for a *t*-Bu ester.(*3*) Acid **7**, with the unprotected alcohol side chain, was coupled selectively to tryptamine using EDC, 1-hydroxyl-7-azabenzo-triazole (HOAt).(*4*) and DMAP to give amide **8** in 80% yield.

[†] *Accession Codes:* Coordinates and structure factors have been deposited in the Protein Data Bank. PDB accession code: Pin1–inhibitor **2** complex, 3NTP. We thank the NIH for financial support from Grant No. R01 CA110940 (FAE), S10 RR16658 (FAE) for the LC-MSMS, and the Welch Foundation for Grant F-1778 (YZ).

Phosphorylation to give **9** was accomplished with di-*tert*-butyl diisopropyl phosphoramidite, followed by oxidation with *tert*-butyl hydroperoxide.(*5*, *6*) Deprotection with TFA released the final phosphorylated Pin1 inhibitor **1**. Inhibitors **2**, **3**, **4a**, and **4b** were synthesized by similar procedures (Schemes S2, S3, and S4).

Scheme 1. Synthesis of reduced amide 1.

General Procedures. Unless otherwise indicated, all reactions were carried out under N₂ in flame-dried glassware. THF was distilled from Na-benzophenone, and CH₂Cl₂ was dried by passage through dry alumina. Anhydrous DMF (99.8%), MeOH, and DIEA were used directly from sealed bottles. Trifluoroethanol (TFE, 99+%) was distilled from Na before use. LiCl (99+%) was dried under vacuum at 150 °C for 24 h. NaHCO₃, NH₄Cl, and brine (NaCl) refer to saturated aqueous solutions unless otherwise noted. Chromatography refers to the flash method of Still et al.(7) performed on 230–400 mesh silica gel with reagent grade solvents as % (v/v). ¹H, ¹³C, and ³¹P NMR spectra were obtained at 500, 125, and 162 MHz, respectively, at ambient temperature in CDCl₃ unless otherwise noted. Chemical shifts are reported in parts per million

(ppm) downfield from tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity: singlet (s), doublet (d), triplet (t), quadruplet (q), quintuplet (qt), multiplet (m), coupling constants *J* in Hz, and integration. In ¹³C NMR spectral listings, minor rotamers are labeled (m). Analytical HPLC (Anal. HPLC): normal phase (NP-HPLC) were obtained on a MetaSil AQ 5 μ SiO₂, 4.6 × 50 mm column, 5% *i*-PrOH/hexanes (v/v) isocratic, flow rate 1.0 mL min⁻¹, unless otherwise noted. Reverse phase (RP-HPLC) were obtained on a C18 4.6 × 50 mm column, with 10% CH₃CN/H₂O for 3 min, then 10 to 90% CH₃CN/H₂O gradient over 6 min, held at 90% for 9 min, flow rate 1.0 mL min⁻¹, with UV detection, unless otherwise noted. Anal. HPLC results are listed as: retention time (min), purity (%).

Fmoc–Ser(OtBu)–Pro–OtBu, 5. A solution of DIEA (1.0 g, 7.8 mmol) and HCI·H–Pro–OtBu (1.3 g, 5.3 mmol) in DMF (5 mL) was added to a solution of Fmoc–Ser(OtBu)–OH (2.0 g, 5.2 mmol), EDC (1.2 g, 6.3 mmol), and HOBt (1.0 g, 6.3 mmol) in DMF (15 mL). The mixture was stirred at rt for 14 h, then diluted with EtOAc (80 mL), and washed with 1 M HCl (30 mL), and 5% aq NaHCO₃ (20 mL). The organic layer was dried over Na₂SO₄, filtered, and evaporated. The crude product was purified by chromatography with 30 to 50% EtOAc/hexanes to yield **5** (2.0 g, 80%) as a colorless oil. Anal. HPLC: 254 nm, 2.0 min, 98%. $[\alpha]^{25}{}_{D}$ = –48.6 (*c* 1, MeOH). ¹H NMR: δ 7.74 (d, *J* = 7.2, 2H), 7.59 (d, *J* = 6.9, 2H), 7.38 (t, *J* = 7.6, 2H), 7.27 (m, 2H), 5.74 (d, *J* = 7.7, 0.4H), 5.71 (d, *J* = 8.0, 0.6H), 4.92 (dd, *J* = 1.6, 8.3, 0.4H), 4.65 (dt, *J* = 6.4, 8.2, 0.6H), 4.51 (ddd, *J* = 4.9, 7.8, 10.1, 0.4H), 4.35 (m, 2.4H), 4.19 (dd, *J* = 7.7, 15.9, 1H), 3.85 (ddd, *J* = 5.2, 7.5, 9.7, 0.6H), 3.65 (m, 1.4H), 3.58 (dd, *J* = 4.7, 6.4, 1H), 3.52 (m, 0.6H), 3.36 (dd, *J* = 8.4,

10.0, 0.6H), 2.23 (m, 1H), 2.12 (m, 2H), 1.90 (m, 2H), 1.46 (s, 5H), 1.42 (s, 4H), 1.20 (s, 5H), 1.13 (s, 4H). ¹³C NMR: δ 171.1 (m), 170.9, 170.2 (m), 169.3, 156.0, 155.3 (m), 144.01 (m), 143.99, 143.90, 143.87 (m), 141.31 (m), 141.30, 127.7, 127.1 (m), 125.24, 125.21 (m), 119.99 (m), 119.98, 82.5 (m), 81.1, 73.7 (m), 73.6, 67.1, 67.0 (m), 64.0 (m), 62.8, 59.93 (m), 59.89, 53.1, 52.7 (m), 47.3, 47.17 (m), 47.16, 46.3 (m), 30.7 (m), 29.1, 28.0, 27.9 (m), 27.4 (m), 27.3, 24.8 (m), 22.5. HRMS (FAB⁺): calcd for C₃₁H₄₁N₂O₆ [M + H]⁺ m/z =537.2965, found m/z = 537.2979.

Fmoc–Ser(OtBu)–Ψ[CH₂N]-Pro–OtBu, **6**. Fmoc–Ser(OtBu)–Pro–OtBu **5** (1.27 g, 2.37 mmol) in dry THF (10 mL) was added to a solution of borane (1.00 M in THF, 3.94 mL, 3.94 mmol) at 0 °C over a period of 15 min. The mixture was stirred at rt for 24 h, cooled to 0 °C, and MeOH (5 mL) was added slowly. The solvents were evaporated, and the residue was purified by chromatography (step gradient: 0 then 25% EtOAc/hexanes) to yield **6** (1.26 g, 65%) as a colorless oil. Anal. HPLC: 210 nm, 2.0 min, 95%. $[\alpha]^{25}{}_{D}$ = –27.0 (*c* 1, MeOH). ¹H NMR: δ 7.75 (d, *J* = 7.5, 2H), 7.66 (t, *J* = 6.6, 2H), 7.39 (t, *J* = 7.4, 2H), 7.29 (tt, *J* = 1.4, 7.4, 2H), 5.96 (d, *J* = 6.0, 1H), 4.34 (m, 2H), 4.24 (t, *J* = 7.1, 1H), 3.74 (m, 1H), 3.59 (m, 1H), 3.41 (m, 1H), 3.21 (m, 2H), 2.80 (m, 2H), 2.59 (d, *J* = 6.5, 1H), 2.06 (m, 1H), 1.85 (m, 3H), 1.47 (s, 9H), 1.19 (s, 9H). ¹³C NMR: δ 174.2, 156.3, 144.2, 141.3, 127.6, 127.0, 125.3, 120.0, 80.7, 73.0, 67.5, 66.6, 61.2, 55.5, 54.7, 51.0, 47.4, 29.6, 28.1, 27.6, 23.9. HRMS (FAB⁺): calcd for C₃₁H₄₃N₂O₅ [M + H]⁺ m/z = 523.3172, found m/z = 523.3169. Fmoc-Ser- Ψ [CH₂N]-Pro-2-(indol-3-yl)-ethylamine, 8. Fmoc-Ser(OtBu)- Ψ [CH₂N]-Pro-OtBu 6 (250 mg, 4.78 mmol) was dissolved in CH_2Cl_2 (8 mL), and BF_3 ·Et₂O (0.8 mL, 6.3 mmol) was added. The reaction mixture was stirred at rt for 20 min. After evaporation, the residue was purified by chromatography (gradient: 10 to 25% of MeOH/CH₂Cl₂) to yield 7 (108 mg, 55%) as a colorless oil. HRMS: calcd for $C_{23}H_{27}N_2O_5$ [M + H]⁺ m/z = 411.1920, found m/z = 411.1932. Fmoc-Ser-Ψ[CH₂N]-Pro-OH 7 (55 mg, 0.13 mmol), tryptamine (26 mg, 0.16 mmol), HOAt (25 mg, 0.16 mmol), and DMAP (5.0 mg, 0.04 mmol) were dissolved in DMF (3 mL), and EDC (31 mg, 0.16 mmol) was added. The reaction mixture was stirred at rt for 14 h, then diluted with EtOAc (50 mL) and washed with water (25 mL \times 3), followed by brine (15 mL). The organic layer was dried over Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography using 9% MeOH/EtOAc to yield 8 as a colorless oil (35 mg, 47%). $[\alpha]^{25}_{D} = -28.7 (c \ 1, \text{MeOH})$. ¹H NMR: δ 8.10 (br s, 1H), 7.78 (d, J = 7.6, 2H), 7.58 (m, 3H), 7.41 (t, J = 7.4, 2H), 7.33 (t, J = 7.6, 2H), 7.15 (d, J = 8.1, 1H), 7.08 (qt, J = 7.0, 2H), 6.94 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 6.94 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 6.94 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 6.94 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 6.94 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.08 (qt, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.15 (d, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.15 (d, J = 7.0, 2H), 7.15 (d, J = 2.3, 1H), 7.15 (d, J = 7.0, 2H), 7.151H), 4.67 (d, J = 8.8, 1H), 4.46 (t, J = 5.7, 2H), 4.19 (t, J = 6.1, 1H), 3.57 (m, 2H), 3.47 (m, 1H), 3.18 (m, 2H), 3.05 (m, 1H), 2.90 (m, 2H), 2.86 (m, 1H), 2.25 (m, 1H), 2.17, (m, 2H), 2.10 (m, 1H), 1.71 (m, 4H), 1.63 (m, 1H). ¹³C NMR: δ 174.5, 156.3, 144.0, 141.5, 136.3, 127.9, 127.7, 127.3, 125.0, 122.4, 122.3, 120.2, 119.6, 119.0, 113.4, 111.5, 68.4, 66.3, 62.2, 55.3, 53.7, 51.2, 47.4, 39.4, 30.2, 24.9, 24.1. MS (ESI⁺): calcd for $C_{33}H_{37}N_4O_4$ [M + H]⁺ m/z = 553.28, found m/z = 553.32.

Fmoc–Ser(PO(OtBu))– Ψ [CH₂N]–Pro–2-(indol-3-yl)-ethylamine, 9. To a solution of 8 (85) mg, 0.15 mmol) in THF (4 mL) was added 5-ethylthio–H-tetrazole (60 mg, 0.46 mmol) and ditert-butyl diisopropylphosphoramidite (85 mg, 0.31 mmol) at rt. The mixture was stirred at rt for 17 h, and cooled to -40 °C. A solution of 5-6 M tert-butyl hydroperoxide in decane (0.11 mL, 0.61 mmol) was added slowly, and the mixture was stirred at -40 °C for 1 h, then at rt for 30 min. The reaction was cooled to -40 °C, and quenched by addition of saturated aq Na₂S₂O₃. The mixture was extracted with EtOAc (20 mL \times 2), and the combined organic extracts were washed with water (20 mL), brine (20 mL), and dried over Na₂SO₄. Concentration under vacuum provided a residue, which was purified by chromatography to give 9 as a colorless oil (51 mg, 45%). Anal. HPLC: 210 nm, 4.0 min, 81%. ¹H NMR (400 MHz): δ 9.03 (br, 1H), 7.77 (d, J = 7.6, 2H), 7.59 (m, 3H), 7.41 (t, J = 7.4, 2H), 7.31 (m, 3H), 7.12 (t, J = 7.1, 1H), 7.06 (t, J = 7.2, 1H), 7.06 (t, 1H & s, 1H), 5.07 (d, J = 8.3, 1H), 4.38 (ddd, J = 6,6, 10.8, 15.0, 2H), 4.19 (t, J = 6.7, 1H), 3.81 (tt, J = 3.6, 7.2, 1H), 3.67 (dt, 2H), 3.56 (m, 1H), 3.38 (ddd, J = 5.2, 8.5, 10.6, 1H), 3.02 (m, 2H),2.95 (m, 2H), 2.43 (dd, J = 5.6, 12.4, 1H), 2.33 (m, 2H), 2.09 (m, 1H), 1.80 (m, 1H), 1.71 (m, 1H), 1.56 (m, 1H), 1.48 (d, J = 2.0, 18H). ¹³C NMR (100 MHz): δ 174.3, 156.1, 143.9, 141.4, 136.5, 127.8, 127.2, 125.15, 125.11, 122.3, 122.0, 120.1, 119.3, 119.0, 113.0, 111.6, 83.4, 69.2, 66.7, 66.2, 56.8, 54.2, 50.7, 47.3, 39.2, 30.3, 29.9, 24.8, 24.3. ³¹P NMR: δ -8.43. HRMS (FAB⁺): calcd for $C_{41}H_{54}N_4O_7P [M + H]^+ m/z = 745.3730$, found m/z = 745.3751.

Fmoc–Ser(PO(OH)₂)– Ψ [CH₂N]–Pro–2-(indol-3-yl)-ethylamine, 1. To a solution of 9 (43 mg, 0.058 mmol) in anhydrous CH₂Cl₂ (2 mL) was added a mixture of TFA (0.5 mL), H₂O (0.1 mL)

and TIPSH (0.02 mL), and the reaction was stirred at rt for 1 h. The solvent was removed under vacuum, and the residue was purified by semi-preparative HPLC on an XBridge C18 4.6×50 mm column with 10% B for 3 min, then 10% to 90% B gradient over 10 min, at 15 mL/min (A: 0.1% TFA/H₂O (v/v), B: 0.1% TFA/CH₃CN (v/v)) to provide 1 at 11.2 min as a white solid after lyophilization (35 mg, 95%). Anal. HPLC: C18 4.6 × 50 mm column, gradient: 10% B for 3 min, then 10 to 90% B over 6 min, held 90% B for 9 min, 254 nm, 8.7 min, 97%. $[\alpha]_{D}^{25} = -4.4 (c \ 1, c)^{25}$ MeOH). ¹H NMR (CD₃OD): δ 7.74 (dd, J = 2.8, 7.3, 2H), 7.62 (d, J = 7.3, 1H), 7.52 (dd, J = 7.7, 4) 13.5, 2H, 7.34 (m, 3H), 7.26 (t, J = 7.5, 1H), 7.22(t, J = 7.6, 1H), 7.05 (m, 2H), 6.94 (t, J = 7.4, 100) 1H), 4.44 (dd, J = 6.4, 10.6, 1H), 4.31 (dd, J = 7.1, 10.5, 1H), 4.15 (m, 2H), 4.08 (m, 1H), 3.94 (m, 1H), 3.89 (m, 1H), 3.68 (m, 1H), 3.52 (m, 2H), 3.39 (d, J = 11.5, 1H), 3.28 (d, J = 13.0, 1H),3.16 (m, 1H), 2.95 (m, 2H), 2.36 (m, 1H), 2.04 (m, 1H), 1.86 (m, 2H). ¹³C NMR (CD₃OD): δ 168.6, 158.0, 145.3, 145.0, 142.6, 138.1, 128.8, 128.2, 126.2, 126.1, 123.7, 122.4, 120.9, 119.7, 119.3, 112.8, 112.4, 68.7, 68.0, 66.6, 57.6, 56.7, 41.8, 30.8, 26.0, 24.2. ³¹P NMR (CD₃OD): δ 0.29. MS (ESI⁺) calcd for $C_{33}H_{37}N_4O_7P [M]^+ m/z = 632.24$ found m/z = 632.27.

Scheme S2. Synthesis of Ac-pSer- Ψ [CH₂N]-Pro-2-(indol-3-yl)-ethylamine inhibitor 2.

Boc–Ser(OBn)–Pro–OBn, 10. Boc–L–Ser(OBn)–OH (2.00 g, 6.77 mmol), HCl·H–Pro–OBn (1.80 g, 7.45 mmol), and DIEA (2.63 g, 20.3 mmol) were dissolved in CH₂Cl₂ (100 mL) and cooled to 0 °C. EDC (1.55 g, 8.12 mmol), HOBt (1.24 g, 8.12 mmol) and DMAP (227 mg, 2.03 mmol) were added, and the mixture was stirred at rt for 48 h. The mixture was diluted with 20 mL CH₂Cl₂, washed with 1N HCl (50 mL × 2), NaHCO₃ (50 mL × 2), and brine (50 mL). The organic layer was dried over Na₂SO₄, filtered and evaporated. The crude product was purified by chromatography (step gradient: 25 then 50% EtOAc/hexanes) to yield **10** (3.0 g, 94%) as a colorless oil. Anal. HPLC: 210 nM, 10.4 min, 99%. [α]²⁵_D = –56.9 (*c* 1, MeOH). ¹H NMR δ 7.32 (m, 10H), 5.41 (d, *J* = 8.6, 0.82H), 5.37 (d, *J* = 8.5, 0.18H), 5.21 (d, *J* = 12.1, 1H), 5.10 (d, *J* = 12.5, 1H), 4.84 (dd, *J* = 2.1, 8.2, 0.18H), 4.70 (m, 0.82H), 4.58 (dd, *J* = 3.8, 8.4, 1H), 4.51 (d, *J* = 11.7, 1H), 4.44 (d, *J* = 11.9, 1H), 3.69 (m, 2H), 3.61 (m, 2H), 2.19 (m, 1H), 1.97 (m, 3H), 1.42 (s, 7.4H), 1.40 (s, 1.6H). ¹³C NMR δ 171.8 (m), 171.7, 170.2 (m), 169.5, 155.4, 154.8 (m), 138.0, 137.9 (m), 135.7, 135.5(m), 128.7 (m), 128.6, 128.43(m), 128.39, 128.32, 128.26 (m), 128.2,

127.8(m), 127.71, 127.66, 127.5(m), 79.8, 79.7 (m), 73.4 (m), 73.2, 71.7 (m), 70.5, 67.5 (m), 66.9, 59.3 (m), 59.2, 52.1, 51.5 (m), 47.1, 46.5 (m), 30.8 (m), 29.1, 28.40, 28.37 (m), 24.9, 22.3 (m). HRMS (FAB⁺) calcd for $C_{27}H_{35}N_2O_6$ [M + H]⁺ m/z = 483.24951, found m/z = 483.24969.

Boc–Ser(OBn)–Ψ[CH₂N]–Pro–OBn, 11. Boc–Ser(OBn)–Pro–OBn **10** (3.00 g, 6.22 mmol) was dissolved in dry THF (14 mL), and BH₃ (1 M in THF, 12.4 mL, 12.4 mmol) was added dropwise at 0 °C. After the addition was complete, the resulting mixture was stirred at 0 °C for 2 h, then at rt for 24 h. The reaction was cooled to 0 °C, and MeOH (10 mL) was added slowly. The solvent was evaporated, and the residue was purified by chromatography with 25% EtOAc/hexanes to yield **11** (1.4 g, 50%) as a colorless oil. Anal. HPLC: 254 nm, 11.2 min, 97%. $[\alpha]^{25}{}_{D}$ = –34.4 (*c* 1, MeOH). ¹H NMR δ 7.31 (m, 10H), 5.15 (m, 1H), 5.13 (d, *J* = 12.3, 1H), 5.09 (d, *J* = 12.3, 1H), 4.51 (d, *J* = 11.8, 1H), 4.46 (d, *J* = 11.7, 1H), 3.79 (m, 1H), 3.67 (m, 1H), 3.55 (dd, *J* = 5.0, 9.2, 1H), 3.32 (dd, *J* = 5.6, 8.6, 1H), 3.17 (dt, *J* = 4.1, 8.0, 1H), 2.86 (dd, *J* = 8.0, 12.4, 1H), 2.65 (m, 1H), 2.52 (m, 1H), 2.08 (m, 1H), 1.90 (m, 2H), 1.80 (m, 1H), 1.43 (s, 9H). ¹³C NMR δ 174.3, 155.7, 138.5, 136.1, 128.6, 128.4, 128.2, 127.7, 127.6, 79.1, 73.2, 70.0, 66.6, 66.3, 55.7, 54.1, 49.7, 29.5, 28.5, 23.9. HRMS (FAB⁺) calcd for C₂₇H₃₇N₂O₅ [M + H]⁺ *m*/*z* = 469.2702, found *m*/*z* = 469.2709.

Ac–Ser(OBn)– Ψ [CH₂N]–Pro–OBn, 12. Boc–Ser(OBn)– Ψ [CH₂N]–Pro–OBn 11 (500 mg, 1.07 mmol) was dissolved in CH₂Cl₂ (10 mL) and a solution of TFA (10 mL) and *i*-Pr₃SiH (0.1 mL) was added. The mixture was stir at rt for 2 h, and concentrated under reduced pressure. The ammonium salt obtained was dissolved in CH₂Cl₂ (5 mL) with DIEA (0.6 mL), and Ac₂O (0.6

mL) was added. The mixture was stir at rt for 14 h. After concentration, the residue was purified by chromatography with EtOAc to yield **12** (0.30 g, 70%) as a colorless oil. Anal. HPLC: 210 nM, 9.4 min, 99%. $[\alpha]_{D}^{25} = -27.4$ (*c* 1, MeOH). ¹H NMR δ 7.34 (m, 10H), 6.67 (d, *J* = 7.3, 1H), 5.15 (d, *J* = 12.1, 1H), 5.10 (d, *J* = 12.2, 1H), 4.54 (d, *J* = 11.9, 1H), 4.46 (d, *J* = 11.9, 1H), 4.07 (m, 1H), 3.68 (dd, *J* = 4.4, 9.2, 1H), 3.48 (dd, *J* = 7.0, 9.2, 1H), 3.37 (m, 1H), 3.17 (m, 1H), 2.86 (dd, *J* = 4.0, 13.0, 1H), 2.74 (dd, *J* = 6.0, 12.8, 1H), 2.54 (m, 1H), 2.17 (m, 1H), 1.94 (s, 3H), 1.86 (m, 3H). ¹³C NMR δ 175.1, 170.1, 138.4, 135.9, 128.7, 128.5, 128.4, 128.3, 127.9, 127.8, 73.3, 69.4, 67.2, 66.6, 55.6, 55.5, 48.7, 30.0, 24.3, 23.4. HRMS (FAB⁺) calcd for C₂₄H₃₁N₂O₄ [M + H]⁺ *m/z* = 411.2284, found *m/z* = 411.2273.

Ac–Ser(OBn)–Ψ[CH₂N]–Pro–2-(indol-3-yl)-ethylamine, 13. Ac–Ser(OBn)–Ψ[CH₂N]–Pro– OBn 12 (0.15 g, 0.36 mmol) was dissolved in MeOH (5 mL), and 10% Pd/C (30 mg) was added. The reaction was stirred at rt under H₂ at 1 atm for 2 h. The solution was filtered through Celite, washed with MeOH, and the solvent was evaporated. The crude oil and tryptamine (60 mg, 0.38 mmol) were dissolved in a mixture of CH₂Cl₂(10 mL), and DMF (5 mL), and HOAt (58 mg, 0.38 mmol), DMAP (10 mg, 0.09 mmol), and EDC (72 mg, 0.38 mmol) were added. The mixture was stirred at rt for 24 h, diluted with CH₂Cl₂(30 mL), washed with water (20 mL), and brine (25 mL). The organic layer was dried over Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography (step gradient: 6% to 17% MeOH/EtOAc) to yield 13 as a light yellow oil (85 mg; 60%). Anal. HPLC: 210 nM, 8.5 min, 96%. ¹H NMR δ 8.43 (br s, 1H), 7.56 (m, 2H), 7.32 (m, 4H), 7.16 (m, 3H), 7.08 (dt, *J* = 0.9, 7.4, 1H), 6.97 (d, *J* = 2.4, 1H), 5.60 (d, J = 8.1, 1H), 4.18 (d, J = 11.8, 1H), 4.13 (d, J = 11.9, 1H), 3.96 (dtt, J = 3.0, 6.0, 9.0, 1H), 3.65 (dq, J = 6.6, 13.2, 1H), 3.40 (m, 1H), 3.15 (dd, J = 3.0, 9.6, 1H), 3.13 (dd, J = 3.4, 9.6, 1H), 3.05 (m, 2H), 3.01 (dt, J = 6.2, 14.4, 1H), 2.88 (dt, J = 7.2, 14.4, 1H), 2.56 (dd, J = 8.7, 12.1, 1H), 2.37 (dd, J = 6.2, 12.1, 1H), 2.34 (dt, J = 6.8, 9.5, 1H), 2.12 (m, 1H), 1.87 (s, 3H), 1.82 (m, 1H), 1.75 (m, 1H), 1.64 (m, 1H). ¹³C NMR δ 174.6, 169.8, 137.9, 136.5, 128.6, 128.0, 127.6, 122.2, 122.1, 119.4, 113.3, 111.4, 73.1, 69.2, 68.9, 56.7, 54.4, 48.5, 39.4, 30.4, 25.4, 24.5, 23.5. HRMS (FAB⁺) calcd for C₂₇H₃₅N₄O₃ [M + H]⁺ m/z = 463.27092, found m/z = 463.27051.

Ac–Ser–Ψ[CH₂N]–Pro–2-(indol-3-yl)-ethylamine, 14. Ac–Ser(OBn)–Ψ[CH₂N]–Pro–2-(indol-3-yl)-ethylamine 13 (125 mg, 0.270 mmol) was dissolved in MeOH (8 mL), and 10% Pd/C (50 mg) and ammonium formate (120 mg) were added. The reaction mixture was heated at reflux for 8 h. After cooling to rt, the mixture was filtered through Celite, washed with MeOH, and purified by chromatography with 17% MeOH/EtOAc to give 14 as a lightly yellow oil (100 mg, 100%). Anal. HPLC: 210 nM, 7.0 min, 94%. ¹H NMR δ 8.58 (br, 1H), 7.60 (d, J = 8.1, 1H), 7.37 (d, J = 8.1, 1H), 7.35 (m, 1H), 7.20 (t, J = 7.6, 1H), 7.10 (t, J = 7.4, 1H), 7.00 (s, 1H), 5.97 (br, 1H), 3.84 (m, 1H), 3.65 (m, 1H), 3.53 (m, 1H), 3.28 (m, 2H), 3.03 (m, 2H), 2.93 (m, 2H), 2.45 (m, 1H), 2.24 (m, 2H), 2.09 (m, 1H), 1.91 (s, 3H), 1.74 (m, 3H). ¹³C NMR (CD₃OD, 100MHz) δ 177.2, 173.1, 138.1, 128.8, 123.5, 122.4, 119.6, 119.4, 113.1, 112.2, 69.6, 62.9, 57.1, 55.4, 51.9, 41.0, 31.3, 26.1, 25.0, 22.7. HRMS (FAB⁺) calcd for C₂₀H₂₉N₄O₃ [M + H]⁺ *m*/*z* = 373.22397, found *m*/*z* = 373.22684.

Ac-Ser(PO(OtBu)₂)-Ψ[CH₂N]-Pro-2-(indol-3-yl)-ethylamine, 15. To a solution of 14 (70 mg, 0.19 mmol) in THF (8 mL) was added 5-ethylthio–H-tetrazole (98 mg, 0.75 mmol) and ditert-butyl diisopropylphosphoramidite (0.12 mL, 0.38 mmol), and the mixture was stirred at rt for 15 h. The mixture was cooled to -40 °C, t-BuOOH (5-6 M in decane, 0.15 mL, 0.75 mmol) was added slowly, and the mixture was stirred at rt for 30 min. The mixture was cooled to -40 $^{\circ}$ C, and quenched with saturated aq Na₂S₂O₃. The mixture was extracted with CH₂Cl₂ (20 mL × 2), and the combined organic extracts were dried over Na₂SO₄. Concentration under vacuum provided a residue, that was purified by chromatography (step gradient: 9 then 17% EtOAc/MeOH) to give 15 as a colorless oil (70 mg, 66%). Anal. HPLC: gradient 10% B for 3 min, then 10 to 90% B over 6 min, 254 nm, 8.5 min, 98%. $[\alpha]^{25}_{D} = +21.6$ (c 1, MeOH). ¹H NMR δ 9.01 (s, 1H), 7.64 (d, J = 8.0, 1H), 7.38 (m, 2H), 7.19 (m, 1H), 7.10 (m, 2H), 6.07 (d, J = 7.9, 1H), 3.90 (m, 1H), 3.79 (m, 1H), 3.63 (m, 2H), 3.47 (dt, J = 5.2, 10.4, 1H), 3.10 (m, 1H), 3.01 (m(m, 3H), 2.47 (dd, J = 5.8, 12.2, 1H), 2.37 (m, 2H), 2.09 (m, 1H), 1.84 (s, 3H), 1.80 (m, 1H),1.73 (m, 1H), 1.57 (m, 1H), 1.50 (d, J = 6.4, 18H). ¹³C NMR δ 174.5, 170.1, 136.6, 127.8, 122.4, 122.1, 119.4, 119.0, 113.1, 111.5, 83.53 (d, ${}^{2}J_{P-C} = 4.2$), 83.47 (d, ${}^{2}J_{P-C} = 4.2$), 69.2, 66.4 (d, ${}^{2}J_{P-C} = 4.2$) = 5.7), 56.4, 54.4, 49.1 (d, ${}^{3}J_{P-C} = 4.8$), 39.2, 30.4, 30.03 (d, ${}^{3}J_{P-C} = 4.3$), 29.99 (d, ${}^{3}J_{P-C} = 4.3$), 25.0, 24.5, 23.4. ³¹P NMR δ –7.86. MS (ESI⁺) calcd for C₂₈H₄₅N₄O₆P [M + H]⁺ m/z = 565.3, found m/z = 565.3.

Ac–Ser(PO(OH)₂)– Ψ [CH₂N]–Pro–2-(indol-3-yl)-ethylamine, 2. To a solution of 15 (30 mg, 0.053 mmol) in CH₂Cl₂ (2 mL) was added a mixture of TFA (0.5 mL), H₂O (0.01 mL) and *i*-

Pr₃SiH (0.01 mL), and the reaction was stirred at rt for 1 h. The solvent was removed under vacuum, and the residue was purified by semi-preparative HPLC with 10% B for 2 min, then 10% to 90% CH₃CN/H₂O gradient over 9 min, at 15 mL/min (A: 0.1% TFA/H₂O, B, 0.1% TFA in CH₃CN) to provide **2**, ret. time 5.4 min, as a white solid after lyophilization (17 mg, 71%). Anal. HPLC: gradient 10% B for 3 min, then 10 to 90% B over 6 min (A: 0.1% TFA/H₂O, B: 0.1% TFA/CH₃CN), 254 nm, 6.4 min, 97%. [α]²⁵_D = -12.3 (*c* 1, MeOH). ¹H NMR (DMSO-d₆, 400 MHz) δ 10.9 (s, 1H), 8.38 (br, 1H), 8.04 (d, *J* = 6.0, 1H), 7.56 (d, *J* = 7.6, 1H), 7.33 (d, *J* = 8.0, 1H), 7.15 (s, 1H), 7.05 (t, *J* = 7.4, 1H), 6.97 (t, *J* = 7.4, 1H), 4.11 (m, 1H), 3.80 (m, 2H), 3.62 (m, 1H), 3.39 (m, 3H), 3.07 (m, 1H), 2.85 (m, 4H), 2.18 (m, 1H), 1.83 (s, 3H), 1.71 (m, 3H). ¹³C NMR (CD₃OD) δ 173.8, 168.7, 138.2, 128.8, 123.8, 122.4, 119.6, 119.3, 112.8, 112.4, 68.8, 66.2, 57.4, 56.8, 48.2, 41.7, 30.8, 26.0, 24.2, 22.8. ³¹P NMR (DMSO-d₆) δ –0.78. HRMS (FAB⁺) calcd for C₂₀H₃₀N₄O₆P [M + H]⁺ *m*/*z* = 453.1903, found *m*/*z* = 453.1912.

Scheme S3. Synthesis of Fmoc–pThr– Ψ [CH₂N]–Pro–2-(indol-3-yl)-ethylamine inhibitor 3.

Fmoc-Thr(OtBu)-Pro-OtBu, 16. A solution of DIEA (0.49 g, 3.8 mmol) and HCl·H-Pro-OtBu (0.52 g, 2.5 mmol) in CH₂Cl₂ (25 mL) was added to a solution of Fmoc-Thr(OtBu)-OH (1.0 g, 2.5 mmol), EDC (0.58g, 3.0 mmol), and HOBt (0.46 g, 3.0 mmol) in CH₂Cl₂ (25 mL). The mixture was stirred at rt for 13 h, washed with 1 M HCl (30 mL), 5% aq NaHCO₃ (30 mL), and brine (30 mL). The organic layer was dried over Na₂SO₄, filtered, and evaporated. The crude product was purified by chromatography with 20% EtOAc/hexanes to give 16 (1.3 g, 92%) as a colorless oil. ¹H NMR δ 7.75 (d, J = 7.7, 2H), 7.59 (m, 2H), 7.38 (m, 2H), 7.29 (m, 2H), 5.95 (d, J = 6.9, 0.4H), 5.75 (d, J = 7.8, 0.6H), 5.21 (dd, J = 3.4, 7.0, 0.4H), 4.45 (dd, J = 5.2, 7.8, 0.6H), 4.35 (m, 3H), 4.20 (t, J = 7.2, 1H), 3.92 (m, 1.6H), 3.72 (m, 1H), 3.54 (dt, J = 8.2, 16.6, 0.4H),2.19 (m, 1H), 2.05-1.84 (m, 3H), 1.47 (s, 5.4H), 1.42 (s, 3.6H), 1.27 (s, 3.6H), 1.23 (s, 5.4H), 1.21 (d, J = 6.2, 1.8H), 1.07 (d, J = 6.6, 1.2H). ¹³C NMR δ 171.5 (m), 171.2, 169.0, 168.3 (m), 155.9, 155.3 (m), 144.1, 143.9 (m), 127.7, 127.1, 125.31, 125.26 (m), 120.0, 82.5 (m), 81.3, 75.1 (m), 74.6, 70.9 (m), 69.2, 67.0, 66.9 (m), 60.14 (m), 60.06, 57.6, 57.3 (m), 48.0, 47.2, 46.6 (m), 30.7, 30.5 (m), 29.2 (m), 28.4, 28.0, 27.9 (m), 25.0, 22.3(m), 19.2, 17.6 (m). HRMS (ESI⁺) calcd for $C_{32}H_{43}N_2O_6 [M + H]^+ m/z = 551.3121$, found m/z = 551.3134.

Fmoc–Thr(**O***t***Bu**)– Ψ [**CH**₂**N**]–**Pro–O***t***Bu**, **17**. Fmoc–Thr(O*t*Bu)–Pro–O*t*Bu **16** (1.14 g, 2.08 mmol) in dry THF (15 mL) was added to a solution of BH₃ (1.00 M in THF, 4.15 mL, 4.15 mmol) at 0 °C over a period of 15 min. The resulting mixture was stirred at rt for 13 h, cooled to 0 °C, and MeOH (5 mL) was added slowly. After evaporation, the residue was purified by chromatography with 12% EtOAc/hexanes to yield **17** (0.44 g, 40%) as a colorless oil, and 0.54

g (47%) of the starting material was recovered. ¹H NMR δ 7.76 (m, 2H), 7.61 (m, 2H), 7.39 (m, 2H), 7.31 (m, 2H), 5.28 (d, *J* = 8.3, 1H), 4.36 (d, *J* = 7.3, 2H), 4.25 (t, *J* = 7.2, 1H), 3.99 (m, 1H), 3.62 (m, 1H), 3.25 (dd, *J* = 4.1, 8.7, 1H), 3.06 (m, 1H), 2.85 (dd, *J* = 6.0, 12.4, 1H), 2.67 (q, *J* = 7.5, 1H), 2.55 (dd, *J* = 7.3, 12.3, 1H), 2.04 (m, 1H), 1.83 (m, 3H), 1.44 (s, 9H), 1.20 (s, 9H), 1.13 (d, *J* = 6.4, 3H). ¹³C NMR δ 174.0, 156.9, 144.5, 141.5, 127.8, 127.2, 125.4, 124.8, 120.2, 66.7, 66.6, 66.3, 65.3, 55.5, 55.4, 53.2, 50.5, 47.5, 29.7, 29.0, 28.3, 23.5, 20.1. HRMS (ESI⁺) calcd for C₃₂H₄₅N₂O₅ [M + H]⁺ *m*/*z* = 537.3328, found *m*/*z* = 537.3325.

Fmoc-Thr-Ψ[CH₂N]-Pro-2-(indol-3-yl)-ethylamine, 19.

Fmoc–Thr(OtBu)– Ψ [CH₂N]–Pro–OtBu **17** (240 mg, 4.47 mmol) was dissolved in CH₂Cl₂(8 mL), and BF₃·Et₂O (0.8 mL, 6.3 mmol), *i*Pr₃SiH (10 µL), and H₂O (10 µL) were added. The reaction mixture was stirred at rt for 1 h. After evaporation, the residue was purified by chromatography (step gradient: 10% then 25% MeOH/CH₂Cl₂) to yield **18** (130 mg, 68%) as a colorless oil. Fmoc–Thr– Ψ [CH₂N]–Pro–OH **18** (130 mg, 0.31 mmol) was dissolved in DMF (10 mL). EDC (72 mg, 0.37 mmol), HOAt (58 mg, 0.37 mmol), DMAP (10.0 mg, 0.092 mmol) and tryptamine (60 mg, 0.37 mmol) were added in order. The reaction mixture was stirred at rt for 12 h, diluted with EtOAc (60 mL), and washed with water (40 mL). The aqueous solution was extracted with EtOAc (30 mL), and the combined organic extracts were washed with NaHCO₃ (30 mL), water (30 mL), and brine (30 mL). The organic layer was dried over Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography with EtOAc to give **19** as a colorless oil (110 mg, 63%). ¹H NMR δ 7.92 (s, 1H), 7.78 (d, *J* = 7.5, 2H), 7.59 (app. t, *J* = 6.4,

3H), 7.41 (t, J = 7.1, 2H), 7.33 (app. t, J = 7.4, 3H), 7.13 (m, 3H), 6.94 (s, 1H), 4.55 (d, J = 8.2, 1H), 4.49 (d, J = 6.0, 2H), 4.20 (t, J = 6.0, 1H), 3.64 (app. sextet, J = 6.5, 1H), 3.55 (m, 2H), 3.36 (m, 1H), 3.07 (dt, J = 6.2, 14.8, 1H), 2.93 (m, 2H), 2.88 (dt, J = 6.3, 15.1, 1H), 2.34 (t, J = 10.8, 1H), 2.18 (m, 2H), 2.12 (m, 1H), 1.81-1.65 (m, 6H), 0.83 (d, J = 6.4, 3H). ¹³C NMR δ 156.6, 144.1, 144.0, 141.5, 136.3, 127.9, 127.6, 127.3, 125.0, 122.6, 122.4, 120.2, 119.7, 119.0, 113.7, 111.6, 68.4, 66.2, 65.2, 56.2, 54.3, 53.6, 47.5, 39.0, 30.1, 25.2, 24.0, 19.9. HRMS (ESI⁺) calcd for C₃₄H₃₉N₄O₄ [M + H]⁺ *m*/*z* = 567.2971, found *m*/*z* = 567.2981.

Fmoc-Thr(**PO(OBn**)₂)–**Ψ**[**CH**₂**N**]–**Pro–2-(indol-3-yl)-ethylamine, 20.** To a solution of **19** (60 mg, 0.11 mmol) in THF (3 mL) was added 5-ethylthio–1*H*–tetrazole (41 mg, 0.32 mmol) and dibenzyl diethylphosphoramidite (67 mg, 0.21 mmol), and the mixture was stirred at rt for 16 h. The mixture was cooled to –40 °C, *t*-BuOOH (5–6 M in decane, 0.077 mL, 0.42 mmol) was added slowly, and the mixture was stirred at –40 °C for 10 min, then at rt for 30 min. The mixture was cooled to –40 °C, and quenched by addition of saturated aq Na₂S₂O₃. The mixture was diluted with EtOAc (60 mL), washed with water (20 mL × 2), brine (20 mL), and dried over Na₂SO₄. Concentration under vacuum provided a residue, which was purified by chromatography with EtOAc to give **20** as a colorless oil (44 mg, 50%). ¹H NMR δ 8.37 (s, 1H), 7.77 (d, *J* = 7.4, 1H), 7.65 (d, *J* = 7.7, 1H), 7.58 (d, *J* = 7.4, 1H), 7.56 (d, *J* = 7.4, 1H), 7.40 (t, *J* = 7.6, 2H), 7.36-7.24 (m, 13H), 7.12 (t, *J* = 7.4, 1H), 7.05 (t, *J* = 7.4, 1H), 6.98 (d, *J* = 2.0, 1H), 5.06 (dd, *J* = 9.0, 11.6, 1H), 5.01 (dd, *J* = 8.5, 11.8, 1H), 4.97 (dd, *J* = 10.4, 11.9, 1H), 4.92 (dd, *J* = 9.9, 11.8, 1H), 4.50 (d, *J* = 9.6, 1H), 4.46 (d, *J* = 6.3, 2H), 4.35 (m, 1H), 4.18 (t, *J* = 6.3, 1H), 3.67 (app. Sextet,

J = 6.7, 1H), 3.58 (m, 1H), 3.48 (m, 1H), 3.06-2.94 (m, 3H), 2.81 (t, J = 7.0, 1H), 2.38 (dd, J = 6.8, 12.6, 1H), 2.18 (m, 2H), 2.03 (m, 1H), 1.78 (m, 2H), 1.64 (m, 1H), 1.50 (m, 1H), 1.08 (d, J = 6.3, 3H). ¹³C NMR & 174.5, 156.6, 144.0, 143.9, 141.5, 136.4, 135.8 (d, ³J_{P.C} = 5.1), 135.7 (d, ³J_{P.C} = 6.4), 129.0, 128.9, 128.2, 128.0, 127.9, 127.7, 127.2, 125.01, 124.95, 122.2, 122.0, 120.2, 119.3, 119.0, 113.4, 111.3, 75.5 (d, ²J_{P.C} = 5.8), 69.68 (d, ²J_{P.C} = 5.3), 69.64(d, ²J_{P.C} = 5.0), 69.4, 66.5, 58.0, 55.2, 54.6, 47.5, 39.2, 30.5, 25.2, 24.6, 18.6. ³¹P NMR (202 MHz) & 0.22. HRMS (ESI⁺) calcd for C₄₈H₅₂N₄O₇P [M + H]⁺ <math>m/z =827.3574, found m/z = 827.3579.

Fmoc-**Thr**(**PO(OH)**₂)-**Ψ**[**CH**₂**N**]-**Pro**-**2**-(**indol-3-yl**)-**ethylamine**, **3**. Dibenzyl phosphate **20** (15 mg, 0.018 mmol), and 10% Pd/C (13 mg) were dissolved in MeOH (2 mL). The reaction was stirred under H₂ (1 atm) at rt for 2 h. The mixture was filtered through Celite, and washed with MeOH. After evaporation, the residue was purified by semi-preparative HPLC (10% CH₃CN/H₂O for 3 min, then 10% to 90% CH₃CN/H₃O gradient over 7 min, 12 mL/min) to give **3**, ret. time 9.5 min, as a white solid after lyophilization (8.0 mg, 68%). Anal. HPLC: gradient 10% B for 3 min, then 10–90% B over 6 min (A: 0.1% HCO₂H/H₂O, B: 0.1% HCO₂H/CH₃CN), 254 nm, 8.3 min, 99%. ¹H NMR (CD₃OD) δ 7.77 (dd, *J* = 4.2, 7.6, 2H), 7.65 (d, *J* = 7.7, 1H), 7.56 (t, *J* = 6.8, 2H), 7.35 (m, 3H), 7.27 (t, *J* = 7.6, 1H), 7.24 (t, *J* = 7.5, 1H), 7.07 (t, *J* = 7.6, 1H), 7.06 (s, 1H), 6.96 (t, *J* = 7.4, 1H), 4.46 (d, *J* = 6.3, 2H), 4.28 (m, 1H), 4.20 (t, *J* = 6.2, 1H), 4.05 (m, 1H), 3.92 (m, 1H), 3.54 (m, 3H), 3.23 (m, 1H), 3.10 (m, 1H), 2.98 (m, 2H), 2.32 (m, 1H), 1.98 (m, 1H), 1.83 (m, 2H), 1.17 (d, *J* = 4.8, 3H). ¹³C NMR (CD₃OD) δ 158.7, 145.5, 145.0, 142.6, 138.2, 128.8, 128.7, 128.1, 126.2, 126.1, 123.7, 122.4, 120.9, 119.6, 119.3, 112.9, 112.3,

72.61, 72.57, 68.2, 67.7, 57.6, 57.4, 54.0, 41.6, 31.0, 26.0, 24.4, 18.5. HRMS (ESI⁺) calcd for $C_{34}H_{40}N_4O_7P [M + H]^+ m/z = 647.2635$, found m/z = 647.2639.

Scheme S4. Synthesis of inhibitors 4a and 4b.

Boc–Ser(OBn)–(*)Pip–OBn, 22. Racemic H–(*)Pip–OH (6.25 g, 48.4 mmol) was suspended in CCl_4 (80 mL), and TsOH (11.0 g, 96.8 mmol) and BnOH (40 mL) were added. The reaction was heated at reflux for 24 h. Evaporation of solvent and precipitation with Et₂O (500 mL) yielded TsOH·H–(*)Pip–OBn **21** (17.4 g, 100%) as a white solid. TsOH·H–(*)Pip–OBn **21** (3.50 g, 8.82 mmol) and DIEA (2.64 g, 20.3 mmol) were dissolved in CH₂Cl₂ (80 mL). Boc–L-Ser(OBn)–OH (2.00 g, 6.78 mmol), EDC (1.55 g, 8.12 mmol), HOBt (1.25 g, 8.12 mmol) and DMAP (0.25 mg, 2.03 mmol) were added. The mixture was stirred at rt for 15 h, washed with water (30 mL), 1M HCl (30 mL × 2), NaHCO₃ (30 mL × 2), and brine (30 mL). The organic layer was dried over Na₂SO₄, filtered, and evaporated. The crude product was purified by chromatography with

25% EtOAc/hexanes to yield **22** (3.1 g, 94%) as a colorless oil. ¹H NMR (50 °C) δ 7.27 (m, 10H), 5.49 (br s 1H), 5.40 (m, 1H), 5.15 (m, 2H), 4.90 (m, 1H), 4.48 (m, 2H), 3.87 (m, 1H), 3.63-3.51 (m, 2H), 3.20 (m, 1H), 2.25 (m, 1H), 1.72-1.46 (m, 4H), 1.43 (br s, 9H), 1.26 (m, 1H). ¹³C NMR δ 170.8, 170.5, 170.2 (d), 138.0 (d), 137.7, 135.7, 135.6 (d), 128.6, 128.4 (d), 128.33, 128.29 (d), 128.2, 128.06 (d), 127.99, 127.97 (d), 127.89, 127.8, 127.6, 79.67, 77.36 (d), 73.3, 73.1 (d), 71.2, 70.4 (d), 67.0 (d), 66.9, 52.6, 52.4 (d), 50.5 (d), 50.2, 43.7 (d), 43.6, 28.4, 26.6, 25.2 (d), 24.8, 21.0, 20.8 (d). HRMS (ESI⁺) calcd for C₂₈H₃₇N₂O₆ [M + H]⁺ *m/z* = 497.2652, found *m/z* = 497.2655.

Boc–Ser(OBn)–Ψ[CH₂N]–(*)Pip–OBn, 23. Boc–Ser(OBn)–(*)Pip–OBn **22** (2.80 g, 5.78 mmol) was dissolved in dry THF (12 mL), and BH₃ (1 M in THF, 11.6 mL, 11.6 mmol) was added dropwise at 0 °C. The resulting mixture was stirred at 0 °C for 3 h and at rt for 11 h. the reaction was cooled to 0 °C, and MeOH (9 mL) was added slowly. The resulting mixture was evaporated and purified by chromatography with 9% EtOAc/hexane to yield **23** (1.3 g, 48%) as a colorless oil. ¹H NMR δ 7.35-7.27 (m, 10H), 5.14 (m, 2.5H), 4.92 (br, 0.5H), 4.47 (m, 2H), 3.76 (m, 1H), 3.60 (m, 1H), 3.54 (m, 0.5H), 3.42 (m, 0.5H), 3.24 (m, 1H), 3.08 (m, 0.5H), 3.02 (m, 0.5H), 2.64 (m, 1H), 2.50 (m, 1H), 2.32 (m, 1H), 1.81-1.38 (m, 6H), 1.46 (s, 4.5H), 1.44 (s, 4.5H). ¹³C NMR δ 173.9, 173.7 (d), 156.0 (d), 155.7, 138.4, 136.1, 128.70, 128.67 (d), 128.48, 128.46 (d), 128.39, 128.36 (d), 128.30 (d), 128.26, 127.8, 127.74, 127.71 (d), 79.2 (d), 79.1, 73.4, 73.2 (d), 70.3, 70.0 (d), 66.2, 66.1 (d), 64.7, 64.2 (d), 57.2 (d), 57.1, 50.6 (d), 50.1, 48.7,

48.4 (d), 29.54, 29.52 (d), 28.58, 28.56 (d), 25.6, 25.5 (d), 22.2, 22.1 (d). HRMS (ESI⁺) calcd for $C_{28}H_{39}N_2O_5[M + H]^+ m/z = 483.2859$, found m/z = 483.2772.

Boc-Ser(OBn)-Ψ[CH₂N]-(*)Pip-2-(indol-3-yl)-ethylamine, 25. Boc-Ser(OBn)-Ψ[CH₂N]-

(*)Pip-OBn 23 (1.0 g, 2.1 mmol) was dissolved in MeOH (50 mL), and 10% Pd/C (200 mg) was added. The reaction was stirred at rt under H₂ (1 atm) for 2 h. After filtration through Celite and washing with MeOH, evaporation gave Boc–Ser(OBn)– Ψ [CH₂N]–(*)Pip–OH 24 (0.8 g, 98%) as a slightly yellow oil. Without further purification, the crude Boc–Ser(OBn)– Ψ [CH₂N]–(*)Pip– OH was dissolved in CH₂Cl₂ (400 mL); tryptamine (0.40 g, 2.5 mmol), EDC (0.48 g, 2.5 mmol), HOAt (0.39 g, 2.5 mmol), and DMAP (0.07 mg, 0.63 mmol) were added. The mixture was stirred at rt for 18 h, washed with water (150 mL), and brine (150 mL). The organic layer was dried over Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography with 33% EtOAc/hexanes to yield **25** as a light yellow oil (0.8 g, 71%). ¹H NMR δ 8.25 (br, 0.6H, 8.11 (br, 0.4H), 7.59 (t, J = 7.5, 1H), 7.33-7.15 (m, 7.8H), 7.09 (m, 1H), 7.99 (m, 0.8H), 6.86 (br, 0.4H), 4.66 (d, J = 8.9, 0.4H), 4.32 (m, 2.6H), 3.80 (m, 1.6), 3.60 (m, 0.4H), 3.48 (m, 1H), 3.28-2.88 (m, 5H), 2.73 (m, 1H), 2.50 (m, 0.4H), 2.41 (m, 0.6H), 2.28 (dd, J = 6.6, 12.8,0.4H, 2.17 (dd, J = 3.8, 13.0, 0.6H), 2.08 (m, 0.4H), 1.88 (m, 1.6H), 1.64-1.24 (m, 15H). ¹³C NMR (100 mHz) & 174.8 (d), 174.2, 158.82, 155.78 (d), 138.1, 137.9 (d), 136.45 (d), 136.46, 128.5, 127.91 (d), 127.88, 127.8, 127.7 (d), 127.6, 127.4 (d), 122.2, 122.1 (d), 122.0, 118.93, 119.5, 119.4 (d), 118.88 (d), 113.4 (d), 113.0, 111.4, 111.3 (d), 79.5, 77.4 (d), 73.2, 70.6 (d), 69.6 (d), 67.9, 58.9 (d), 57.1, 52.3, 51.8, 48.7, 47.8 (d), 39.3, 38.9 (d), 30.2 (d), 29.4, 28.6, 28.5 (d),

25.4, 25.2 9 (d), 24.6 (d), 24.3, 23.4 (d), 23.3. HRMS (FAB⁺) calcd for $C_{31}H_{43}N_4O_4[M + H]^+ m/z$ = 535.3284, found m/z = 535.3285.

Ac-Ser(OBn)- Ψ [CH₂N]-(*R/S*)Pip-2-(indol-3-yl)-ethylamine, 26a and 26b. Boc-Ser(OBn)- Ψ [CH₂N]–(*)Pip–2-(indol-3-yl)-ethylamine 25 (120 mg, 0.22 mmol) was dissolved in CH₂Cl₂ (4 mL) and a solution of TFA (4 mL), and *i*-Pr₃SiH (0.01 mL) was added at 0 °C. The mixture was stirred at 0 °C for 30 min, and at rt for 2 h. The crude mixture was concentrated under reduced pressure. The ammonium salt obtained was dissolved in CH₂Cl₂, and basified with NaHCO₃ (40 mL). After separation, the aqueous layer was extracted with CH_2Cl_2 (20 mL × 3). The combined organic layers were washed with brine (20 mL), and dried over Na₂SO₄. After filtration and evaporation, the residue was dissolved in CH₂Cl₂ (5 mL). Ac₂O (46 mg, 0.45 mmol) and Et₃N (46 mg, 0.45 mmol) were added. The reaction mixture was stirred at rt for 14 h. After dilution with CH_2Cl_2 (50 mL), the mixture was washed with 0.1 M NaOH (20 mL \times 2), and brine (20 mL), and dried over Na₂SO₄. After filtration and concentration, the residue was purified by chromatography with EtOAc to yield two diastereomers: 26a (48 mg, 45%), and 26b (32 mg, 30%). **26a**: ¹H NMR δ 8.17 (s, 1H), 7.58 (d, J = 7.4, 1H), 7.31 (m, 4H), 7.23 (m, 2H), 7.18 (app. dt, J = 1.0, 7.9, 1H), 7.10 (t, J = 7.4, 2H), 7.02 (d, J = 2.3, 1H), 5.59 (d, J = 8.9, 1H), 4.34 (d, J = 1.0, 7.9, 1H), 7.10 (t, J = 7.4, 2H), 7.02 (d, J = 2.3, 1H), 5.59 (d, J = 8.9, 1H), 4.34 (d, J = 1.0, 7.9, 1H), 7.10 (t, J = 7.4, 2H), 7.02 (d, J = 2.3, 1H), 5.59 (d, J = 8.9, 1H), 7.10 (t, J = 7.4, 2H), 7.02 (d, J = 2.3, 1H), 5.59 (d, J = 8.9, 1H), 7.10 (t, J = 7.4, 2H), 7.02 (d, J = 2.3, 1H), 5.59 (d, J = 8.9, 1H), 7.10 (t, J = 7.4, 2H), 7.02 (d, J = 2.3, 1H), 5.59 (d, J = 8.9, 1H), 7.10 (t, J = 7.4, 2H), 7.02 (d, J = 2.3, 1H), 5.59 (d, J = 8.9, 1H), 7.10 (t, J = 7.4, 2H), 7.02 (d, J = 2.3, 1H), 5.59 (d, J = 8.9, 1H), 7.10 (t, J = 7.4, 2H), 7.02 (d, J = 2.3, 1H), 7.10 (t, J = 8.9, 1H), 7.10 (t, J = 7.4, 2H), 7.02 (d, J = 2.3, 1H), 7.10 (t, J = 8.9, 1H), 7.10 (t, J = 7.4, 2H), 7.02 (d, J = 2.3, 1H), 7.10 (t, J = 8.9, 1H), 7.10 (t, J = 7.4, 2H), 7.10 (t, 12.1, 1H, 4.30 (d, J = 12.0, 1H), 4.07 (m, 1H), 3.62 (m, 1H), 3.54 (m, 1H), 3.23 (dd, J = 3.0, 14) 9.6, 1H), 3.14 (dd, J = 3.8, 9.6, 1H), 2.97 (m, 2H), 2.88 (dt, J = 3.8, 7.9, 1H), 2.70 (dd, J = 3.5, 1H), 2.70 (dd, 9.6, 1H), 2.40 (dd, *J* = 8.4, 12.9, 1H), 2.24 (dd, *J* = 6.2, 13.0, 1H), 2.08 (m, 1H), 1.86 (m, 1H), 1.84 (s, 3H), 1.64 (m, 1H), 1.53 (m, 2H), 1.31 (m, 2H). ¹³C NMR δ 174.3, 170.0, 137.8, 136.5,

128.6, 128.1, 127.9, 127.6, 122.2, 122.1, 119.5, 118.9, 113.2, 111.4, 69.2, 68.1, 56.4, 52.6, 47.3, 47.2, 38.9, 38.8, 29.6, 25.3, 24.5, 23.3. HRMS (FAB⁺) calcd for $C_{28}H_{37}N_4O_3$ [M + H]⁺ m/z = 477.2866, found m/z = 477.2841. **26b**: ¹H NMR δ 8.05 (br, 1H), 7.57 (d, J = 7.9, 1H), 7.38 (m, 2H), 7.32 (m, 3H), 7.28 (dd, J = 0.6, 8.0, 1H), 7.17 (dt, J = 1.0, 7.2, 1H), 7.09 (dt, J = 0.7, 7.4, 1H), 6.92 (d, J = 1.8, 1H), 6.62 (t, J = 5.2, 1H), 5.43 (br, 1H), 4.45 (d, J = 11.4, 1H), 4.42 (d, J = 12.0, 1H), 4.14 (m, 1H), 3.72 (m, 1H), 3.53 (m, 1H), 3.32 (dd, J = 3.0, 9.6, 1H), 3.30 (dd, J = 4.4, 9.3, 1H), 3.04 (m, 2H), 2.94 (m, 1H), 2.73 (dd, J = 3.6, 9.8, 1H), 2.58 (dd, J = 10.6, 12.9, 1H), 2.26 (dd, J = 3.8, 13.2, 1H), 1.85 (m, 1H), 1.82 (m, 1H), 1.62 (m, 1H), 1.54 (s, 3H), 1.52 (m, 1H), 1.30 (m, 2H). ¹³C NMR δ 174.6, 170.3, 138.0, 136.4, 128.7, 128.2, 128.1, 127.2, 122.4, 122.3, 119.6, 118.7, 113.0, 111.5, 73.5, 70.9, 67.7, 57.9, 51.5, 46.8, 39.2, 29.6, 25.2, 24.3, 23.3, 23.0. HRMS (ESI⁺) calcd for $C_{28}H_{37}N_4O_3$ [M + H]⁺ m/z = 477.2866, found m/z = 477.2848.

Ac–L-Ser(PO(OtBu)₂)– Ψ [CH₂N]–(*R/S*)Pip–2-(indol-3-yl)-ethylamine, 28a and 28b. Ac–L-Ser(OBn)– Ψ [CH₂N]–(*)Pip–2-(indol-3-yl)-ethylamine 26a (38 mg, 0.080 mmol) was dissolved in MeOH (5 mL), and 10% Pd/C (20 mg) and ammonium formate (150 mg) were added. The reaction was heated at reflux for 5 h. After filtration through Celite and washing with MeOH, evaporation yielded 27a (25 mg, 81%) as a slightly yellow oil. To the crude 27a (25 mg, 0.065 mmol) in THF (5 mL) was added 5-ethylthio–H–tetrazole (34 mg, 0.26 mmol) and di-*tert*-butyl diisopropylphosphoramidite (72 mg, 0.26 mmol) at rt, and the mixture was stirred at rt for 8 h. The mixture was cooled to –40 °C and *t*-BuOOH (5–6 M in decane, 47 µL, 0.26 mmol) was added slowly and the mixture was stirred at rt for 30 min. The reaction was cooled to –40 °C,

and quenched by addition of saturated aq $Na_2S_2O_3$. The mixture was extracted with CH_2Cl_2 (20) mL \times 2), and the combined organic extracts were dried over Na₂SO₄. Concentration under vacuum provided a residue, which was purified by chromatography (step gradient: 0% then 9% *i*-PrOH/EtOAc) to give **28a** as a colorless oil (18 mg, 48%). ¹H NMR δ 9.00 (br, 1H), 7.64 (d, J = 7.9, 1H, 7.38 (d, J = 7.8, 1H), 7.17 (dt, J = 1.2, 7.6, 1H), 7.10 (dt, J = 0.8, 7.4, 1H), 6.92 (m, 1H), 5.83 (d, J = 8.0 1H), 4.05 (m, 1H), 3.75 (m, 2H), 3.62 (m, 1H), 3.42 (m, 1H), 3.05 (m, 2H), 2.84 (m, 1H), 2.75 (dd, J = 3.4, 8.7, 1H), 2.33 (dd, 1H), 2.27 (dd, 1H), 2.15 (t, 1H), 1.82 (s, 3H), 1.79 (m, 1H), 1.59 (m, 2H), 1.49 (s, 18H), 1.46 (m, 1H), 1.31 (m, 2H). ¹³C NMR δ 173.8, 170.2, 136.6, 127.6, 122.4, 122.1, 119.4, 119.0, 113.0, 111.6, 83.4, 67.9, 66.3, 55.7, 51.8, 47.4, 38.8, 30.0, 28.8, 25.2, 24.0, 23.3, 23.1. ³¹P: δ -8.53. ³¹P NMR δ -8.53. HRMS (FAB⁺) calcd for $C_{29}H_{48}N_4O_6P [M + H]^+ m/z = 579.3311$, found m/z = 579.3265. By a similar procedure, **28b** was obtained as a colorless oil (12 mg, 40%). ¹H NMR δ 10.22 (s, 1H), 7.58 (d, J = 7.9, 1H), 7.41 (d, J = 8.4, 1H, 7.17 (m, 1H), 7.10 (m, 1H), 7.06 (br, 1H), 6.43 (br, 1H), 5.01 (d, J = 5.9, 1H), 4.22 (br, 1H), 3,86 (m, 2H), 3.78 (m, 1H), 3.56 (m, 1H), 3.18 (m, 1H), 3.13 (m, 1H), 3.05 (m, 1H), 2.67 (dd, J = 3.4, 10.8, 1H), 2.58 (m, 1H), 2.05 (dd, J = 3.3, 13.0, 1H), 1.92 (m, 1H), 1.82 (m, 2H), 1.67 (m, 1H), 1.52 (m, 21H), 1.48 (m, 1H), 1.37 (m, 1H), 1.22 (m, 1H). ¹³C NMR δ 174.8, 170.6, 136.8, 127.1, 122.6, 122.2, 119.4, 118.7, 112.5, 112.1, 83.5, 68.3, 67.5, 58.1, 52.0, 46.1, 39.2, 30.8, 30.0, 25.0, 24.8, 23.4, 22.3. ³¹P-NMR δ -9.26. HRMS (FAB⁺) calcd for C₂₉H₄₈N₄O₆P $[M + H]^+ m/z = 579.3311$, found m/z = 579.3351.

Ac-L-Ser(PO(OH)₂)-Ψ[CH₂N]-(*R/S*)Pip-2-(indol-3-yl)-ethylamine, 4a and 4b. To a solution of 28a (15 mg, 0.026 mmol) in CH₂Cl₂ (4 mL) was added a mixture of TFA (1 mL), H₂O (0.04 mL), and *i*-Pr₃SiH (0.04 mL), and the reaction was stirred at rt for 1h. The solvent was removed under vacuum, and the residue was purified by semi-preparative HPLC (5% CH₃CN/H₂O for 5 min, then 5% to 30% CH₃CN/H₂O gradient over 10 min, 12 mL/min) to provide 4a at 9.5 min, as a white solid after lyophilization (8.0 mg, 66%). Anal. HPLC: gradient 10% B for 3 min, then 10-90% B over 6 min (A: 0.1% HCO₂H/H₂O, B: 0.1% HCO₂H/CH₃CN), 254 nm, 6.5 min, 97%. ¹H NMR (CD₃OD) δ 7.56 (d, J = 7.7, 1H), 7.35 (d, J = 8.3, 1H), 7.10 (s, 1H), 7.08 (t, J = 7.2, 1H) 1H), 7.00 (t, J = 7.5, 1H), 4.35 (m, 1H), 3.90 (m, 2H), 3.74 (m, 2H), 3.60 (m, 2H), 3.12 (m, 3H), 2.99 (t, J = 6.8, 2H), 2.00 (m, 1H), 1.97 (s, 3H), 1.78 (m, 4H), 1.52 (m, 1H). ¹³C NMR (CD₃OD) δ 174.1, 168.9, 138.2, 128.8, 123.7, 122.4, 120.0, 119.3, 112.7, 112.4, 65.8, 58.5, 57.5, 54.3, 48.2, 41.2, 29.5, 26.0, 23.7, 22.5, 21.6. ³¹P NMR (CD₃OD) δ 0.69. HRMS (ESI⁺) calcd for $C_{21}H_{32}N_4O_6P [M + H]^+ m/z = 467.2059$, found m/z = 467.2062. By a similar procedure, **4b** at 9.5 min, was obtained as a white solid (4 mg, 50%). Anal. HPLC: 6.5 min, 95%. ¹H NMR (400 mHz, CD₃OD) δ 7.57 (d, J = 7.9, 1H), 7.37 (d, J = 8.1, 1H), 7.10 (m, 2H), 7.00 (t, J = 7.4, 1H), 4.39 (m, 1H), 3.90 (m, 3H), 3.58 (m, 3H), 3.12 (m, 1H), 2.94 (m, 4H), 2.00 (s, 3H), 1.92 (m, 2H), 1.80 (m, 1H), 1.69 (m, 2H), 1.51 (m, 1H). ¹³C NMR (CD₃OD) δ 176.1, 169.7, 138.2, 128.7, 123.9, 122.4, 119.6, 119.3, 112.6, 112.5, 67.9, 65.6, 60.7, 53.6, 47.8, 41.0, 30.3, 26.1, 24.2, 22.5, 22.4. ³¹P NMR (202 MHz, CD₃OD) δ 1.64. HRMS (ESI⁺) calcd for C₂₁H₃₂N₄O₆P [M + H]⁺ m/z = 467.2059, found m/z = 467.2060.

References

- 1. Roeske, R. W., Weitl, F. L., Prasad, K. U., and Thompson, R. M. (1976) Selective Reduction of the Amide Carbonyl Group in Dipeptides by Borane, *J. Org. Chem.* 41, 1260-1261.
- Cushman, M., and Oh, Y.-I. (1991) Development of Methodology for the Synthesis of Stereochemically Pure Phe[CH₂N]Pro Linkages in HIV Protease Inhibitors, *J. Org. Chem.* 56, 4161-4167.
- Papanikos, A., and Meldal, M. (2004) α-Keto Amide Peptides: A Synthetic Strategy to Resin-Bound Peptide Isosteres for Protease Inhibitor Screening on Solid Support, *J. Comb. Chem.* 6, 181-195.
- Carpino, L. A. (1993) 1-Hydroxy-7-azabenzotriazole: an efficient coupling additive, J. Am. Chem. Soc. 115, 4397-4398.
- Perich, J. W., and Johns, R. B. (1988) Di-*t*-butyl *N*,*N*-diethylphosphoramidite and dibenzyl *N*,*N*-diethylphosphoramidite. Highly reactive reagents for the 'phosphite-triester' phosporylation of serine-containing peptides, *Tetrahedron Lett.* 29, 2369-2372.
- Zhao, S., and Etzkorn, F. A. (2007) A phosphorylated prodrug for the inhibition of Pin1, *Bioorg. Med. Chem. Lett.* 17, 6615-6618.
- Still, W. C., Kahn, M., and Mitra, A. (1978) Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution, *J. Org. Chem.* 43, 2923-2925.

Figure S1. Dose response curve for inhibition of Pin1 by $\text{Fmoc}-\text{Ser}(\text{PO}(\text{OH})_2)-\Psi[\text{CH}_2\text{N}]-\text{Pro}-2-(\text{indol-3-yl})-\text{ethylamine } \mathbf{1} \text{ (IC}_{50} = 6.3 \pm 0.4 \ \mu\text{M}).$

Figure S2. Dose response curve for inhibition of Pin1 by Ac–Ser(PO(OH)₂)– Ψ [CH₂N]–Pro–2-(indol-3-yl)-ethylamine **2** (IC₅₀ = 12 ± 2 μ M).

Figure S3. Dose response curve for inhibition of Pin1 by Fmoc–Thr(PO(OH)₂)– Ψ [CH₂N]–Pro– 2-(indol-3-yl)-ethylamine **3** (IC₅₀ = 30 ± 2 μ M).

Figure S4. Dose response curve for inhibition of Pin1 by Ac–Ser(PO(OH)₂)– Ψ [CH₂N]-(*)Pip– 2-(indol-3-yl)-ethylamine **4a** (IC₅₀ = 16 ± 2 μ M).

Figure S5. Dose response curve for inhibition of Pin1 by Ac–Ser(PO(OH)₂)– Ψ [CH₂N]-(*)Pip– 2-(indol-3-yl)-ethylamine **4b** (IC₅₀ = 190 ± 20 μ M).

S30

S33

S35

S36

³¹P NMR

768.f —

