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Supplemental Figures 

 
Figure S1. Random distribution of ministacks in nocodazole-treated cells as confirmed by 
the following test: in pre-assembly snapshots of scattered Golgi-ministacks, a circular disc of 
radius 5µm (25 pixel) is placed randomly in the cell and the number of mini-stacks within the 
disc is counted (blue). The bar graph shows almost a constant number of mini-stacks found 
within the disc as it is moved randomly throughout the cell. Larger discs of radius 10 µm (green) 
or 15 µm (red) show similar behavior. The average number of mini-stacks within the disc 
increases proportionally to the area of the disc. Two examples are shown. 
 

 
Figure S2. Centrosome ablation does not disrupt the Golgi or the MT network. A-B, an 
RPE1 cell expressing centrin-GFP before and after laser ablation of the centrosome (arrows). 
This cell was fixed after 2 hours of random migration and immunostained for the Golgi marker 
GM130 and MTs. C, Immunofluorescence image of the cell presented in A-B. GM130, red. 
Tubulin (far-red, false-colored blue). D, A bystander cell in the same preparation. Notice the 
intact centrosome (arrow). Golgi morphology and the MT network look similar in C and D.  
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Figure S3: CLASP depletion in RPE1 cells. A, CLASP1 and CLASP2 detected by western 
blotting, actin, loading control. B, C, Immunostaining confirms that as compared with control 
non-targeted siRNA transfected cells (B), CLASPs are considerably depleted and evenly 
distributed in knockdown cell population (C). 

 

 
Figure S4: Predicted size distribution of Golgi fragments. Histograms of sizes are shown for 
20 (top) and 60 (bottom) min of assembly. A, In control, the drift in size space starts after 20 min 
(see small number of ~ 1cubic micron-large fragments), and by 60 min a significant number of 
fragments are voluminous. Note that the total volume of large fragments is greater than that of 
small fragments. B, In the acentrosomal case, large fragments do appear, but their size 
distribution is very dispersed. C, In the CLASP-depleted case, large fragments do not evolve. 
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Figure S5: Predicted statistics of Golgi assembly. A, The total numbers of disjointed Golgi 
fragments is small and similar in control and acentrosomal cases, but is four-fold greater in the 
CLASP depleted case.  B, Average radii of Golgi fragments in all 3 cases. C, Golgi fragments 
are distributed over a wider area in the CLASP depleted and acentrosomal cases after 60 min of 
assembly than in the control case. Spanning cluster’s center is at the ‘centre-of-mass’ of all 
Golgi fragments, and its radius is Rspan = sum (mi ri)/sum(ri), where mi and ri are the volume and 
distance from the centre-of-mass of the i’th fragment. D, Predicted compactness of Golgi cluster 
for control, acentrosomal and CLASP depleted cases after 60 min of assembly. Compactness is 
defined as the ratio (Golgi area within spanning cluster)/(total area of the spanning 
cluster=πRspan

2).  

 
Figure S6: Predicted long term behavior of Golgi assembly. Overall Golgi organization (A), 
number of fragments (B) and angular distribution of the Golgi (C) do not differ significantly from 
those at 1 hour of assembly, indicating that the assembly has reached steady state at the 1 hour 
time point. 
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Figure S7: Independent disassembly of MTs and Golgi. Immunostaining.  Tubulin, red, 
GM130, green (far red, false-colored). Centrin-GFP, blue (false-colored). In contrast to a control 
cell (A), cold-treated cells lack the MT network (B, C) and BFA-treated cells lack the Golgi 
apparatus (D, E). No striking difference observed between centrosomal (B, D) and 
acentrosomal cells (C, E). 

 

  
Figure S8: Experimental data for the angular distribution of Golgi fragments before (0 

min) and after (60 min) assembly. A, Total area (in pixels) of Golgi fragments in each of the 
eight 45-degree wide sectors. The inset shows the geometry: zero degree corresponds to the 
right tangent to the nucleus from the centrosome. 90 degrees correspond to the outward normal 
to the nuclear surface. After 60 min of assembly, significant focusing in angular space takes 
place in control cell, and the most of Golgi ministacks are right in front of the centrosome.  B, 
Normalized Golgi area averaged from 3 control cells shows the same effect as in A. C, In the 
CLASP depleted case (result from averaging 2-cell data), there is almost no focusing, and the 
maximum of the Golgi density deviates from 90 degrees. 
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Figure S9. Metrics of the motility assays used in the study. A, Directional migration 

metric. Results of quantification are presented in Fig. 3 I, J. B, Momentary polarization metric. 
Results of quantification are presented in Fig. 3 K-O. C, Golgi repositioning metric. Time 
between cell configurations 2 and 3 is presented in Fig. 3P. 
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Fig S10. Repositioning of the Golgi during spontaneous turns in migrating cells. A-R, 
Selected frames from time-lapse movies presenting mCherry-Rab6 fluorescence (green) 
superimposed on DIC (A-L) or phase-contract (M-R) images. A-D, untreated centrosomal cell, 
E-H, untreated acentrosomal cell; I-L, centrosomal cell released from 2-hr nocodazole 
treatment; M-R, acentrosomal cell released from 2-hr after nocodazole washout. Time 0 
corresponds to 2 hrs after nocodazole washout. Red letters N denote nuclei; asterisks denote 
leading edges. 



 
 

 7 

 
 
Fig. S11. Migration of centrosomal and acentrosomal cells after ice or BFA treatment. A-
D, Random single cell migration of: A, centrosomal cell fixed 2h after  ice treatment; B, 
acentrosomal cell starting 2h after  ice treatment; C, centrosomal cell starting 2h after BFA 
washout; D, acentrosomal cell starting 2h after BFA washout. Color-coded images depict 
positions of each cell at 1h intervals. E, directional persistence of migration and J, total cell 
migration distance, in the four experimental conditions corresponding to A-D. Asterisk indicates 
P<0.05 in unpaired Student's t-test between bars marked with black and white asterisks. Error 
bars represent SEM.
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Supplemental information on modeling Golgi assembly 

To simulate Golgi assembly, we used agent-based object-oriented methodology (Alberts 
and Odell, 2004). Our discrete stochastic model is 3-dimensional. Parameters of the model are 
gathered in the table below. The geometry of the cell consists of an oblate-spheroidal space 
occluded by a spherical nucleus. Initially, ~ 150 Golgi fragments (ministacks) of radius 0.2 µm 
are uniformly randomly distributed within the cell space excluding the nuclear space. 
Experimental observations suggest that the cell and the nucleus are not concentric; the latter is 
usually located closer to the side of the cell. Therefore we assume certain displacement of the 
nuclear center relative to the cell center resembling observed geometry. The centrosome in the 
model, similar to the observation, is located near the nuclear surface, at the side distal to the 
cell boundary.  

In the model, three classes of objects are implemented: (i) Golgi-generated and centrosomal 
MTs; (ii) Golgi fragments (ministacks, clusters); (iii) obstacles such as nuclear surface and cell 
boundary. The objects behave according to the rules described below. Golgi fragments are 
spherical; two hemispheres represent trans- and cis- sides respectively.  

Simulated dynamic MTs are either linear or curved, as observed (with fixed radius of 
curvature close to that observed). Entire population of the centrosomal MTs is divided among 
the straight and curved MTs in a 2:1 ratio. This ratio is chosen because it appears to be optimal 
in terms of the speed and completeness of the assembly when varied between 1:1 and 3:1. A 
simple reason could be this: Because of excluded volume of the nucleus, straight centrosomal 
MTs can grow and span approximately 2/3 of the cell space. Therefore, remaining 1/3 space is 
given to the curved MTs to probe and catch targets. Each MT is represented by short rigid 
segments of equal lengths connected to each other. The minus-ends are anchored at the 
centrosome and Golgi, while the plus-ends undergo growth and shortening by adding or losing 
segments with constant rates Vg and Vs respectively. The catastrophe (fcat) and rescue (fres) 
frequencies are chosen to minimize the Golgi assembly time. Multiple simulations were made to 
find the optimal parameters. It turns out that the optimal regime corresponds to no rescues, fres = 
0 (MT growing in the direction where no Golgi fragments are located has to shrink to zero and 
start to grow in the new direction.) Optimal catastrophe frequency corresponds to MTs growing 
to the average length <LMT> comparable to the cell size; fcat = Vg /<LMT>. For simplicity we 
assumed these parameters to be the same for both centrosomal and Golgi-nucleated MTs.  

A catastrophe also instantly takes place after a collision with the cell or nuclear boundary. 
Upon encountering a Golgi fragment, a MT may shrink or bypasses the Golgi fragment with 
probability Pbypass and grows further or catastrophes with probability (1 - Pbypass). We found that 
when probability Pbypass is below ~ 0.5, we could not fit the observed numbers of Golgi fragments 
as functions of time. For 0.5 < Pbypass < 1, the fits were good. The reported results are for Pbypass 
= 0.8. About 300 dynamic MTs are nucleated from the centrosome in random directions 
spanning the whole space, as well as from the trans- sides of the Golgi stacks spanning the half 
space determined by orientation of each stack.  

Once a growing MT plus-end encounters an initial Golgi fragment, we assume that dynein 
motor(s) associated with the membrane transport it toward the MT minus-end with speed VGolgi 
determined by a free speed of the dynein motors. Viscous resistance of the cytoplasm is 
negligible (Cytrynbaum et al., 2003). We assume that the motors coat the Golgi stacks on both 
cis- and trans- sides. We tested the case in which only trans- sides are associated with the 
motors, and the assembly was too slow to reproduce the data. Two fragments touching each 
other merge after certain delay time τmerge but only if they were brought together by a Golgi-
generated MT. Two fragments brought together accidentally by two centrosomal MTs merged 
only with a significant delay. The underlying mechanism is based on the idea that a MT-motor-
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dependent action is required to allow the fragments to fuse with each other. Once two fragments 
are successfully merged, they form a single spherical fragment with the trans/cis surface 
pointing in the direction determined as the geometric average of the directions of the original 
two fragments. During this process, the entire MT array of participating fragments is destroyed 
and a new array of MTs emerges after the merging is completed. In the control case, the 
number of MTs nucleated by the fused fragment is assumed to be proportional to its surface 
area. (Number of MTs nucleated from the merged fragment = (Initial average number of MTs 
per Golgi fragment)*Smerged/Smin, where Smerged and  Smin are the surface areas of the merged and 
initial fragments respectively.) Within the delay time τmerge, if one of the engaged fragments is 
captured by MTs from a different source, it is pulled away and merging is not accomplished. 
When Golgi fragments are pulled by centrosomal MTs, they pile up near the centrosome. When 
a Golgi fragment was closer than a threshold to the centrosome and was above a certain radius, 
it flattened along the nuclear surface, due to pulling forces from the centrosomal MTs pressing 
the fragments to the nucleus. 

We have considered three scenarios for the nucleation of MTs at the Golgi surface: A) 
control, B) acentrosomal, and C) CLASP depleted. The number of MTs nucleated by each initial 
Golgi fragment is 3 - 4 in cases (A,B), 1 - 2 in case (C). In case (B), the centrosomal MT array is 
completely disrupted.   

The polarization parameter reported in Fig. 4E was computed as the integral 

, where  is the angular distribution of the MTs, and is the 

direction from the center of the nucleus to the centrosome.   
        
We have simulated the model repeatedly varying parameters and repeating assembly 

simulations hundreds of times for each parameter value. Technical details of the simulations are 
the same as those reported in (Paul et al., 2009). The numerical codes were implemented with 
C programming language. Numerical experiments were performed on an IBM dual CPU 
Opteron server. 
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Parameters used in the simulation 
Parameter Description Value 

Rcell Cell radius 20-30 µm * 
dcell Cell thickness 1-1.5 µm * 
Rnuc Nuclear radius 10 µm * 
Rves Initial Golgi fragment radius 0.15-0.2 µm * 
NMTcent Number of centrosomal MTs 250-300 ** 
NMTGolgi Number of initial MTs per Golgi fragment 0-5 *** 
VGolgi Dynein-driven speed of a small fragment  0.13 µm s-1 **** 
Vg MT growth rate 0.1 µm s-1 ** 
Vs MT shortening rate 0.2 µm s-1 ** 
fcat Optimal MT catastrophe frequency 0-0.002 s-1 ***** 
fres Optimal MT rescue frequency 0 s-1 ***** 
Zshift Shift of the nuclear center from the cell 

center 
-10 µm * 

Hcent Centrosome distance from nucleus 1.35 µm * 
τmerge Ministack merging time 1 min ****** 
τflip Ministack flip time 1.5 min ****** 
σMT Number of MTs nucleated per µm2 surface 

area of a merged Golgi fragment 
~ 4 *** 

Pbypass Probability for a MT plus-end that runs into a 
Golgi fragment to bypass it 

~ 0.5 – 1 *** 

 
* Based on our observations (this study): four cell images were used. For the radii, we measured the 
areas of the cell, nucleus and Golgi fragments, divided it by π, took the square root, and averaged for four 
images. We averaged the cell thickness from the side view along the length of the cell, and then 
averaged for four images. 
** (Rusan et al., 2001; Burakov et al., 2003; Paul et al., 2009). 
*** Inferred from from fitting the number of Golgi fragments as function of time, as well as based on 
previous results (Efimov et al., 2007). 
**** (Cytrynbaum et al., 2003). 
***** Obtained by numerical scan of the parameter space. Specifically, starting with 150 Golgi fragments, 
we ran the simulation for the control case and measured the time until the fragment number reduced to 
25. The simulations were performed in the range of the catastrophe and rescue frequencies between 0 
and 0.05/s with increment 0.001/s. We then plotted the assembly time as a function of catastrophe and 
rescue frequencies and determined their optimal values from the global minima of the obtained assembly 
time. The optimal frequency of rescue turned out to be lower than that reported for the peripheral parts of 
interphase cells. Our simulations predict that the Golgi assembly would slow down considerably if the 
rescue frequency is as high as reported for the peripheral parts of interphase cells. Interestingly, the 
frequency of rescue needed to best fit the experimental data resembles the frequency observed during 
prometaphase (Paul et al., 2009). Note that interphase MT parameters were measured in steady-state 
while during prometaphase a new array of microtubules is assembled. The latter condition is more similar 
to the situation observed upon nocodazole washout. 
****** These are maximal times that give good numerical fits to the data. Smaller times do not make the 
fits worse; greater times worsen the fits. 
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Supplemental Experimental Procedures and Data Analysis 
 

The Golgi complex organization 

Circularity and Compactness 
For these measurements the Golgi was visualized via immunostaining for the cis-Golgi 

component GM130. The complex was freehand-outlined in maximal-intensity projections 
computed from complete Z-series collected at 0.2 µm steps.  

ImageJ circularity plugin (rsb.info.nih.gov/ij/plugins/circularity.html) was used to compute the 
Circularity index [Circularity = 4π*(area/perimeter2)].  

Circularity index has been used to analyze overall cell shape (Patel et al., 2008; Miller et al., 
2009) as well as to measure microfilament ring circularity during cellularization (Thomas and 
Wieschaus, 2004). A circularity value of 1 corresponds to a perfect circle. 

To determine compactness the freehand-outline of the Golgi was thresholded to assign an 
integer pixel value within the selection and 0 value to the background. An imageJ plugin that 
calculates the percentage of non-zero pixels in the image or selection was used to determine 
the percentage of the area taken by the Golgi stacks inside the selection. Higher level of 
compactness indicates more dense Golgi structure while lower level of compactness 
corresponds to more dispersed and disorganized Golgi complex. 

 

Post-Golgi vesicles tracking 
Two-minute time-lapse wide-field fluorescence sequences of RPE1 cells expressing 

fluorescently-labeled Rab6 were recorded at 1-s intervals. Individual particles were tracked 
manually using the MTrackJ ImageJ plugin (www.imagescience.org/meijering/software/mtrackj/) 
Then the number of tracks was determined in each quadrant oriented with respect to the 
position of the cell’s leading edge (front, left, back and right quadrants). 

 

Directional persistence of cell migration.  
4-hr long time-lapse DIC sequences were recorded at 3-min intervals. Positions of the 

nucleus were tracked manually using the MTrackJ ImageJ plugin (see above). Cell relocation 
was measured as the distance between the nucleus position at the start and at the finish. The 
length of tracks was deemed to represent the total distance of cells migration. Directional 
persistence was calculated as cell relocation divided by the length of the track (Fig. S2A). 
Directional persistence value of 1 corresponds to the strictly uni-directional migration. 

 

Momentary polarity index 
To evaluate ability of a cell to persistently maintain polarity, 30-min long time-lapse DIC 

sequences were recorded at 3-min intervals. Cell contours were freehand-outlined at each time-
point. These outlines were superimposed on the next frame in the sequence, which allowed us 
to identify new-formed protrusions (Fig. S2B). Momentary polarity index was calculated as the 
ratio of the area of protrusion at the leading edge to the summarized area of protrusions along 
the whole cell perimeter. Momentary polarity index value of 1 indicates a maximally polarized 
cell, and value of ½ corresponds to an absolutely non-polarized cell. 
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The Golgi reorientation assay 
To measure the time required for Golgi reorientation to the leading edge, multi-mode 

DIC/fluorescence time-lapses were recorded at 3-min intervals. Positions of the cell nucleus, the 
Golgi complex and the leading edge were manually tracked using MTrackJ ImageJ plugin (see 
above). For each frame, the angle between position of the Golgi complex center and the leading 
edge center with angular point corresponding to nucleus position was measured (Fig. S2C). An 
acute angle below 600 corresponded to the front position of the Golgi according to the leading 
edge, and an obtuse angle (over 900) corresponded to the back position. Time from the cell turn 
(new leading edge formation) and the Golgi re-orientation toward the leading edge (below 600) 
was measured for sharp turns upon which the Golgi was found behind the nucleus (at least 900 
angle).  
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