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Supplementary Material

There are several ways to introduce noise in the Hodgkin-Huxley-type neuron models as the ones we

examined in this paper [1, 2]. A quite common approach is to add a white noise term in the right-hand

side of the current conservation equation (which describes the evolution of the membrane potential in

time), as seen for example in Eq. 31 in the main text. This “noisy current” aims to approximate the effect

of a number of factors, such as the stochastic opening and shutting of transmembrane ion channels or the

random bombardment of the neuron with synaptic input, and its major advantage is its simplicity. This

is the approach we followed in this study. Since a major source of noise is the random fluctuations in the

total conductance within a population of ion channels, it is reasonable to assume that similar (possibly,

state-dependent) noise terms should be included in the dynamic equations describing the time evolution

of the activation and inactivation gating variables (Eq. 32). For a single compartment model (as in Eqs.

31 and 32 in the main text), we can write:

dV =
Iext −GL(V − EL)−GNam

3h(V − ENa)−GKn4(V − EK)

Cm

dt− 1

Cm

dIsyn (S1)

dx = (ax(1− x)− bxx) dt+ σX

√

ax(1− x) + bxxdWx (S2)
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where x ∈ {m,h, n}, X ∈ {Na,K} and σX =
(√

NX

)

−1
with NX being the total number of sodium or

potassium channels in the model. ax and bx are functions of voltage, as shown below:

am = 0.1
V + 40

1− exp
(

−V+40

10

) , bm = 4 exp

(

−V + 65

18

)

ah = 0.07 exp

(

−V + 65

20

)

, bh =
1

1 + exp
(

−V+35

10

)

an = 0.01
V + 55

1− exp
(

−V+55

10

) , bn = 0.125 exp

(

−V + 65

80

)

Notice that the noise terms in Eq. S2 depend on both the voltage and the gating variables. Also notice

that, in Eq. S1, Isyn is the sum of the excitatory and inhibitory synaptic input the neuron receives. For

an infinitesimal change in this current, we can write:

dIsyn = γE(V − EE)dPE + γI(V − EI)dPI (S3)

where dPE and dPI are Poisson processes, which model the random arrival of presynaptic excitatory and

inhibitory spikes at firing rates λE and λI , respectively. γE and γI are unitary increases in the synaptic

conductance and EE and EI are the reversal potentials of the excitatory and inhibitory synaptic currents,

respectively. Assuming that the neuron receives a high-frequency barrage of presynaptic spikes, it is

common to re-write the above expression for synaptic current using the diffusion approximation [3]:

dIsyn = (γEλE(V − EE) + γIλI(V − EI)) dt+
√

λEγ2
E(V − EE)2 + λIγ2

I (V − EI)2dWsyn (S4)

Notice that we have assumed that changes in the total synaptic current are instantaneous. This is just

an approximation, since changes in synaptic conductances have characteristic rise and decay relaxation

times (see, for example, [4, 5]). Observation noise was as in Eq. 7 in the main text with σy = 1mV .

In Eq. S1, the membrane capacitance, maximal conductances and reversal potentials were as follows:

Cm = 1nF/cm2, GL = 0.3mS/cm2, GNa = 120mS/cm2, GK = 36mS/cm2, EL = −54.4mV , ENa =

55mV , EK = −77mV , EE = 0mV and EI = −75mV . In Eq. S2, σNa = 0.04 and σK = 0.02. Unitary

synaptic conductances and presynaptic firing rates in Eq. S4 were: γE = 1mS/cm2, γI = 1mS/cm2,

λE = 0.03ms−1 and λI = 0.01ms−1. With these parameters, the model in Eqs. S1, S2 and S4 was

active in the absence of any external input Iext. Given a recording of this activity, the fixed lag-smoother
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can be used for retrieving the hidden states of the model and various parameters that control channel

and synaptic noise (σNa, σK , λE and λI), as shown in Figs. S1 and S2. This simulation experiment

demonstrates the applicability of the algorithm, when more complex noise models are considered.
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