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Text S1 Details of the analytical calculation of m-value

To analytically work on the integration

h(X, t) =

∫ ∞
−∞

∏
i∈t1

N(Xi;µ, Vi)p(µ)dµ ,

we use the fact that the product of two Gaussian probability density functions results in a single Gaussian

[1, 2]. This result can easily be generalized to more than two Gaussians. That is,

N(x;µ1, V1)N(x;µ2, V2)...N(x;µn, Vn) ∝ N(x;µnew, Vnew)

where

µnew =

∑
Wiµi
Wi

Vnew =
1∑
Wi

and Wi = V −1i is the inverse variance or precision. Also, since a normal distribution is symmetric,

N(a; b, V ) = N(b; a, V ) .

Using these two facts, given µ ∼ N(0, σ2),

h(X, t) =

∫ ∞
−∞

∏
i∈t1

N(Xi;µ, Vi)p(µ)dµ

=

∫ ∞
−∞

∏
i∈t1

N(µ;Xi, Vi)p(µ)dµ

= C̄

∫ ∞
−∞

N(µ; X̄, V̄ )p(µ)dµ

= C̄

∫ ∞
−∞

N(X̄;µ, V̄ )p(µ)dµ

= C̄ ·N(X̄; 0, V̄ + σ2)
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where

X̄ =

∑
iWiXi∑
iWi

V̄ =
1∑
iWi

and C̄ is a scaling factor such that

C̄ =
1

(
√

2π)N−1

√∏
iWi∑
iWi

exp

{
−1

2

(∑
i

WiX
2
i −

(
∑
iWiXi)

2∑
iWi

)}
.

The summations are all with respect to i ∈ t1.

Text S2 P-value estimation using importance sampling for bi-

nary effects model

We suggest an importance sampling procedure for estimating the p-value of the binary effects model.

Importance sampling is a statistical technique for reducing the variance of the estimate by sampling from

a distribution different from the distribution of interest [3].

In an importance sampling procedure for obtaining p-value, the sampling distribution is chosen so

that the sampled statistic can easily exceed the threshold of the observed statistic Ŝ. In the case of

1-dimensional distribution, this goal is usually achieved by choosing a sampling distribution centered at

or around Ŝ. However, we have a complication that the sampling space is N -dimensional where N is the

number of studies in the meta-analysis. Different regions spread over this N -dimensional space can give

the same statistic. Therefore, simply changing the center of the original sampling distribution from zero

to Ŝ will not work, and the importance sampling procedure should effectively traverse all regions. The

idea we suggest to achieve this goal is to sample the number of studies having an effect first and sample

from the corresponding region, as shown in the following.

First, we sample the number of studies having an effect NE . We assume a uniform distribution

P (NE = k) = 1/N where k = 1, ..., N . Next, we sample N z-scores from the following mixture of normal

distributions,

fNE
(x) =

N −NE
N

1

2π
e−x

2/2 +
NE
N

1

2π
e
−
(
x− Ŝ√

NE

)2

/2

where Ŝ is the observed binary effects model statistic. The mean value Ŝ√
NE

comes from the intuition that

if the sample size and the minor allele frequency are the same between studies (Vi is the same between

studies) and if the m-values correctly predict the effects in the studies (mi is one for the studies having

effect and zero otherwise), then having NE z-scores of value Ŝ√
NE

and N −NE z-scores of value zero will

give us the exactly same statistic Ŝ. Therefore, the use of this mean value will lead us to a region that

will give a similar statistic to Ŝ.

If the sample size is different between studies, we use the following sampling distribution instead.



Interpreting Meta-analyses 3

Given NE , there are
(
N
NE

)
possible combinations to choose NE studies. Assume a single combination

among them and let M be the set of indices of NE studies that are chosen to have an effect. Given M ,

a z-score vector that will exactly produce the statistic Ŝ is

Ŝ√∑
i∈M Wi

(
I(1 ∈M)

√
W1, I(2 ∈M)

√
W2, ..., I(N ∈M)

√
WN

)
,

where I is an indicator function. Note that in this vector only NE elements are non-zero. We iterate

all
(
N
NE

)
combinations and calculate the mean β∗ and variance V ∗ of all possible NE ·

(
N
NE

)
non-zero

elements. The new sampling distribution is then

fNE
(x) =

N −NE
N

1

2π
e−x

2/2 +
NE
N

1

2π
e−(x−β

∗)2/(2(1+V ∗)) ,

taking into account the variation caused by unequal sample sizes. If
(
N
NE

)
is too large for an exact

calculation, we randomly sample 1,000 combinations and estimate β∗ and V ∗.

Now that we defined fNE
given a sampled value NE , the overall sampling distribution of a vector of

z-scores Z∗ = (z∗1 , z
∗
2 , ..., z

∗
N ) is

fsample(Z
∗) =

N∑
k=1

(
P (NE = k)

N∏
i=1

fNE
(z∗i )

)
.

Given B sampled z-scores Z∗1 , Z
∗
2 , ..., Z

∗
B from this generative model, the p-value is estimated as

p = 2

B∑
j=1

I
(
S(Z∗j ) ≥ |Ŝ|

)
· f0(Z∗j )/fsample(Z

∗
j )

B

where f0(Z) = 1
(2π)N/2 e

−ZTZ/2 is the original null distribution of z-scores and S(·) denotes the binary

effects model statistic given the z-scores. The multiplying factor 2 comes from the fact that the null

distribution of S is symmetric.

The fact that the null distribution is symmetric can be shown as follows. We informally describe the

reasoning rather than giving a formal proof. Given a point Z giving a binary effects model statistic S,

consider that we move to a symmetric point about the origin, −Z, in the N dimension space. It can be

easily shown that the m-values of the studies do not change because the formula (2) (or the formula (S1) if

we use approximation) gives the same value. Thus, the statistic corresponding to −Z will simply be −S.

Therefore, if we let KS ∈ RN be the set of all points giving a statistic S, the region giving the statistic

−S will be the symmetric counterpart, K−S = {−Z|Z ∈ KS}. Given the fact that the null distribution

of z-scores (f0(Z)) is symmetric about the origin, the probability of S, f(S) =
∫
KS

f0(X)dX, will be the

same as the probability of −S, f(−S) =
∫
K−S

f0(X)dX. In other words, the probability density function

of S is symmetric under the null.
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Text S3 Efficient m-value approximation for binary effects model

Since the binary effects model involves sampling, the standard procedure for estimating m-value is inef-

ficient. We propose an efficient approximation. We first assume a point prior π for the prior probability

that the effect exists. Then, the m-value of study i is simply

mi =
πN(Xi;µ, Vi)

(1− π)N(Xi; 0, Vi) + πN(Xi;µ, Vi)

if we knew the true value of µ.

Instead of assuming a distribution prior on µ, we use an empirical approach that estimates µ from

the other N − 1 studies in the meta-analysis. The inverse-variance-weighted estimate is

X̂i =

∑
j 6=iWjXj∑
j 6=iWj

.

The variance of X̂i is given

V̂i =
1∑

j 6=iWj

.

Then we set an emprically estimated prior on µ

µ ∼ N(X̂i, V̂i) .

The approximated m-value is

m∗i =
π
∫∞
−∞N(Xi;µ, Vi)p(µ)dµ

(1− π)N(Xi; 0, Vi) + π
∫∞
−∞N(Xi;µ, Vi)p(µ)dµ

=
πN(Xi; X̂i, Vi + V̂i)

(1− π)N(Xi; 0, Vi) + πN(Xi; X̂i, Vi + V̂i)
(S1)

The intuition under this empirical approach is that by using the other N − 1 studies, we can obtain the

prior on µ which is independent of Xi. In this sense, our approach has similarities to the leave-one-out

cross-validation approach usually used in evaluating statistical prediction methods [3].

The advantage of this empirical approach is that the computation is very efficient. The disadvantage

is that the information about µ in study i is not utilized since we only use the other N −1 studies. In the

case that only study i has an effect, as the sample size of the other studies increases, m∗i asymptotically

converges to π instead of 1 since the other studies do not have any clue about µ. For this reason, we use

this empirical approach only for the purpose of efficiently computing the binary effects model statistic

and p-value. We use π = 0.5 for all experiments in this paper.
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