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The probabilistic interpretation of the regularization param-

eter λ

Ridge regression. Here, we derive the (known) result that if (1) the coefficients

βj are normally distributed with variance τ
2, i.e. β ∼ N(0, τ 2I), and (2) that the

training data yi are contaminated with Gaussian noise of variance σ
2, i.e. y ∼

N(Xβ, σ
2I), then the problem of finding the maximum likelihood fit is equivalent to

regularization by ridge regression, with λ = σ
2
/τ

2.

The log-likelihood of obtaining the training data y from this model is
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The maximum likelihood β̂ can be found by applying Bayes’ identity

P (β|σ, τ,y) ∝ P (y|σ, τ, β)

P (y)

and setting
∂ log P (β|σ, τ,y)
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This is equivalent to finding the β that minimizes (y−Xβ)T (y−Xβ)+λβ
T
β, where

λ = σ
2
/τ

2.

Lasso regression. If the βj are distributed as βj ∼ 1
2τ2 exp(− |βj |

τ2 ), then the prob-

lem of finding the maximum likelihood fit is equivalent to regularization by lasso

regression, with λ = σ
2
/τ

2. The log-likelihood of obtaining the training data y from

this model is

log P (β|y, σ, τ) = N log
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and the maximum likelihood β̂ can be found by setting
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Elastic net regression. If the βj are distributed as βj ∼ P (βj) = A(τ, ρ) exp(−ρ
β2

j

2τ2−

(1− ρ) |βj |
τ2 ), where ρ is a mixing parameter and A(τ, ρ) is the normalization constant

that makes
�

P (βj)dβj = 1, then the problem of finding the maximum likelihood

fit is equivalent to regularization by elastic net regression, with λ = σ
2
/τ

2. The

log-likelihood of obtaining the training data y from this model is
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where γ ≡ ρ−1√
2ρτ2

. The maximum likelihood β̂ in this case can be found by setting

∂

∂β

�
N�

i

1

2
(yi −

�

j

Xijβj)
2 +

σ
2

τ 2

K�

j

|βj| +
σ

2

2τ 2

K�

j

β
2
j

�
= 0

Standardizing of input data

Here we mention an important property of ridge, lasso and elastic regression: the

results of the regression are not invariant to scaling of the training data, i.e. scaling

or translating the training data y will non-trivially influence the effects of the regu-

larization penalty. Thus, in practice, it is a good idea to standardize the input data

by some method before calculating rate spectra. If the time series has a non-zero

baseline (i.e. y(t) does not go to zero as t → ∞), a typical procedure would be to

eliminate this degree of freedom by “centering” the data. First, assuming that βK

corresponds to kK = 0, one can estimate βK directly by ȳ = 1
N

�
i yi. Then, for the

remaining βj, j = 1, ..., K − 1, ȳ is subtracted from each yi, and the regressor inputs

Xij are replaced by Xij−(1/N)
�

i Xij. (X now being a (N +K−1)×K−1 matrix.)

This prevents the baseline from being penalized by the regularization procedure.

For the purposes of computing rate spectra, however, the centering procedure is

not robust. We find that ȳ is not always an accurate estimate of βK , depending on

the form of the input data. Instead, simply scaling the input data yi to the interval

[0, 1], and including βK in the regression, gives better results. While the baseline

is still penalized by regularization, the effect is negligible, especially when spectrum

includes many other rates kj near zero.
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Rate spectra for stretched-exponential functions

The analytical solution for the (continuous) rate spectrum Hγ(k), is given by two

equivalent formulae [10]:

Hγ(k) =
τ0
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whose numerical computation works well for large values of k, and
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which works well for small values of k.

Both derivations proceed from the Bromwich integral

H(K) = lim
�→0

1

2π

� �+i∞

�−i∞
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where I(T ) = exp(−T
β), and T = t/τ0. Equation (9) proceeds from complex inver-

sion integral by defining a special contour [15], while Equation (10) proceeds from a

contour integration [16].
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Supplementary Figures
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Figure S1: The effects of regularization (using ridge regression) on
a noisy tri-exponential dataset. Artificial noise N(0, s2), s = 0.025 was
added to 1000 samples of a tri-exponential time series with time constants
(τ1, τ2, τ3) = (10−6

s, 10−4
s, 5×10−3

s), and amplitudes (respectively) of (α1, α2, α3) =
(0.3, 0.3, 0.4). Columns show the results for λ = 0.01, 0.5, 2.5 and 100: (top) a noisy
data set (blue) with best-fit time traces ŷ, (middle) the calculated rate spectrum (red
lines for each τi), and (bottom) the cumulative distribution of rate amplitudes (with
red lines indicated the cumulative amplitudes of each relaxation. For small values
of λ (0.01), the spectrum is only weakly regularized, resulting in a spectrum heavily
affected by noise. For larger values of λ (0.5, 2.5), three peaks corresponding to each
timescale in the data is recovered. For very large values of λ (100), the rate spectrum
is broadened, although in this case, the three timescales are still discernible.
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Figure S2: Posterior sampling of the regularization parameter λ. Ridge
regression was performed for the tri-exponential data with added noise (s = 0.05).
(a) Monte Carlo sampling of the posterior in σ and τ produces a converged trajectory
of values λ = σ

2
/τ

2. (b) A contour plot of (σ, τ) counts (contours from blue to red:
1, 2, 5, 10, 25, 100, 250, 500). (c) The rate spectrum calculated as the expectation
over all posterior samples. (d) The posterior distribution of P (λ|y), as calculated
from posterior sampling.

37


