Supplementary Information

The probabilistic interpretation of the regularization param-

eter A\

Ridge regression. Here, we derive the (known) result that if (1) the coefficients
; are normally distributed with variance 72, i.e. § ~ N(0,72I), and (2) that the
training data y; are contaminated with Gaussian noise of variance o2, ie. y ~
N(X3,0%T), then the problem of finding the maximum likelihood fit is equivalent to

regularization by ridge regression, with A = o2 /72.

The log-likelihood of obtaining the training data y from this model is
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The maximum likelihood B can be found by applying Bayes’ identity
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This is equivalent to finding the 3 that minimizes (y — X3) (y — X3) + A\37 3, where

A=o%/T%

Lasso regression. If the (; are distributed as ; ~ 2 exp(— ) then the prob-
lem of finding the maximum likelihood fit is equivalent to regularization by lasso
regression, with A = 02/72. The log-likelihood of obtaining the training data y from

this model is
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and the maximum likelihood B can be found by setting
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Elastic net regression. If the 3, are distributed as 3; ~ P(8;) = A(t, p) exp(—prg—
(1—-p)= 1%1) where p is a mixing parameter and A(7, p) is the normalization constant
that makes [ P(3;)dB; = 1, then the problem of finding the maximum likelihood
fit is equivalent to regularization by elastic net regression, with A = o02/72. The

log-likelihood of obtaining the training data y from this model is

log P(Bly,o,7) = N log <\/%> + K log (\/%r) + K (7* +log(1 + Erf(v)))
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— The maximum likelihood B in this case can be found by setting
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Standardizing of input data

Here we mention an important property of ridge, lasso and elastic regression: the
results of the regression are not invariant to scaling of the training data, i.e. scaling
or translating the training data y will non-trivially influence the effects of the regu-
larization penalty. Thus, in practice, it is a good idea to standardize the input data
by some method before calculating rate spectra. If the time series has a non-zero
baseline (i.e. y(t) does not go to zero as t — o), a typical procedure would be to
eliminate this degree of freedom by “centering” the data. First, assuming that Og
corresponds to kx = 0, one can estimate (B directly by y = % >:yi. Then, for the
remaining 3;, j = 1,..., K — 1, § is subtracted from each y;, and the regressor inputs
X;; are replaced by X;; —(1/N) >, X;;. (X now being a (N + K —1) x K —1 matrix.)
This prevents the baseline from being penalized by the regularization procedure.
For the purposes of computing rate spectra, however, the centering procedure is
not robust. We find that y is not always an accurate estimate of [k, depending on
the form of the input data. Instead, simply scaling the input data y; to the interval
[0,1], and including Sk in the regression, gives better results. While the baseline
is still penalized by regularization, the effect is negligible, especially when spectrum

includes many other rates k; near zero.
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Rate spectra for stretched-exponential functions

The analytical solution for the (continuous) rate spectrum H,(k), is given by two

equivalent formulae [10]:

H.,(k) = % /000 exp(—k7ou) exp[—u” cos(ym)] sin[u” sin(ym)|du 9)

whose numerical computation works well for large values of k, and

H,(k) = o /OOO exp|—u” Cos(g)] cos[u” sin(% — krou)|du (10)
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which works well for small values of k.
Both derivations proceed from the Bromwich integral
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where I(T) = exp(—=T"), and T = t/7y. Equation (9) proceeds from complex inver-
sion integral by defining a special contour [15], while Equation (10) proceeds from a

contour integration [16].
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Supplementary Figures
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Figure S1: The effects of regularization (using ridge regression) on
a noisy tri-exponential dataset. Artificial noise N(0,s%),s = 0.025 was
added to 1000 samples of a tri-exponential time series with time constants
(11,72, 73) = (10765,107%s, 5 x 10735), and amplitudes (respectively) of (a1, as, o) =
(0.3,0.3,0.4). Columns show the results for A = 0.01,0.5,2.5 and 100: (top) a noisy
data set (blue) with best-fit time traces y, (middle) the calculated rate spectrum (red
lines for each 7;), and (bottom) the cumulative distribution of rate amplitudes (with
red lines indicated the cumulative amplitudes of each relaxation. For small values
of A (0.01), the spectrum is only weakly regularized, resulting in a spectrum heavily
affected by noise. For larger values of A (0.5, 2.5), three peaks corresponding to each
timescale in the data is recovered. For very large values of A (100), the rate spectrum
is broadened, although in this case, the three timescales are still discernible.
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Figure S2: Posterior sampling of the regularization parameter \. Ridge
regression was performed for the tri-exponential data with added noise (s = 0.05).
(a) Monte Carlo sampling of the posterior in o and 7 produces a converged trajectory
of values A = 0/7%. (b) A contour plot of (¢, 7) counts (contours from blue to red:
1, 2, 5, 10, 25, 100, 250, 500). (c) The rate spectrum calculated as the expectation
over all posterior samples. (d) The posterior distribution of P(\A|y), as calculated
from posterior sampling.
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