



Suppl. Figure 1. Sequence alignment of bovine $G\alpha_{t1}$, human $G\alpha_{t2}$, $G\alpha_{i1}$, and chimeric $G\alpha_{t1}$ 'and $G\alpha_{t2}$ '. Arrows indicate mutated $G\alpha_{t1}$ ' residues.

Suppl. Figure 2. Kinetics of GTP γ S binding to G α_{t1} ' and G α_{t2} ' under the conditions of the single-turnover GTPase assay using uROS (2 μ M rhodopsin), 1 μ M G α_{t1} ' or G α_{t2} ', 1 μ M G $\beta_1\gamma_1$ and 100 nM [35 S]GTP γ S instead of [γ - 32 P]GTP.

Suppl. Figure 3. Single turnover GTPase assay of $G\alpha_{t2}$ '-2. GTPase activity measurements were carried out in suspensions of uROS membranes (10 µM rhodopsin) reconstituted with $G\alpha_{t2}$ '-2 (1 µM) and $G\beta_1\gamma_1$ (1 µM). Reactions were started with the addition of 100 nM [γ -32P]GTP and free ³²P₁ was measured by liquid scintillation. Results from one of three similar experiments are shown (k_{cat} =0.026 s⁻¹).