

SUPPLEMENTARY ONLINE DATA Discovery of cellular substrates for protein kinase A using a peptide array screening protocol

F. Donelson SMITH¹, Bret K. SAMELSON and John D. SCOTT¹

Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, 1959 Pacific Avenue NE, Seattle, WA 98195, U.S.A.

	Α	В	сı	D	Е	F	G	н	I	J	к	L	м	Ν	0	Ρ	Q	R	s	т	U	v	W	х			
	1 0 2 3 4						•		•		•				•			0						•		•	nospho-PKA antibody
1B:	RHRK RHRK RHRK	RRRS	LSF	DP	SL	L		mou	ise	MDN	12	NP_	034	916	5		3D:	YD	PG	RRP	pSFI SFR/ AFR/	IL	RD		JAK3		NP_034719
1H:	FPGR FPGR FPGR	RRQS	VLD	LM	TF	F		mou	ise	CFT	R	NP_	066	388	8		3M:	GA	KL	RKV	pSK(SKQI AKQI	EEA	SG		VASP		NP_033525
1K: 1L:	NEAR NEAR NEAR NEAR	RRpS RRST	TLF	LS ST	TD/ DA			SH/	ANK:	1A		NP_	066	388	8		3P:	PF	EDI	RRQ	pSVS SVSI AVSI	ROP	SF		PTPN5		NP_008837
1N: 10:	ARRK	RRSA RRTp	SIG	ST	DA	E		Pie	co	lo		NP_	036	125	5		3V:	VR	RET	RRH	pSA/ SAAG AAAG	GSP:	SS		TIAM2		NP_036008
1Q: 2I:	ARRK EELH	RRTA RRSp	IGS	SS:	SE TLF	•		PI	P5K		0	NP_	035	216	5		4A:	KR	ISI	RRQ	pSLI SLEI ALEI	QK	CE		BAZ1B		NP_035844
2K: 2L:	EELH EELH EELH EELH	RRSA	VLE	NT	LP												4M:	PC	RP	RRG	pSLI SLP/ ALP/	GA	SW		RAP1GA	NΡ	EAW94984
2W: 2X:	PATS PATS PATS	RRSS RRAS		IS	LE LE	E	R	RIL,	/PDI	LIM4	•	NP_	062	290)		4P: 4Q:	KM	1PAI 1PAI	RRA	pSLS SLSF ALSF	HPR HPR	DI		GRANUL	IN	NP_002078
	PATS PATS																4S:	LC	DQ	RRP	pSLF SLP/ ALP/	ALH	FI		ABL1		NP_00110617

Figure S1 Confirmation that phosphorylation is required for peptide recognition by anti-phospho-PKA substrate antibody

Peptide arrays of potential PKA phosphorylation sites were synthesized as described in the main text. Several peptides were arrayed for each potential site. First, phospho-serine or phospho-threonine were incorporated into the potential phospho-acceptor sites during peptide synthesis. In addition, WT and 'alanine mutant' peptides were arrayed. The membrane was not subject to *in vitro* phosphorylation with PKA. Instead, the membrane was incubated with the anti-phospho-PKA substrate antibody, followed by appropriate secondary antisera. Only peptides containing phosphorylated residues are detected by this antibody. Non-phosphorylated peptides were not detected. Furthermore, some peptides that did contain phospho-serine or phospho-threonine were not detected, presumably due to other sequence preferences of the antibody. Finally, some peptides were recognized by the antibody in this experiment, but were not reliably detected in other trials where membranes were phosphorylated with the PKA C-subunit and ATP. This is probably due to the fact that not all peptides containing a consensus motif will serve as good substrates for *in vitro* phosphorylation. ABL1, c-abl oncogene 1, non- receptor tyrosine kinase; BAZ1B, bromodomain adjacent to zinc finger domain, 1B; CFTR, cystic fibrosis transmembrane conductance regulator; IB, immunoblot; JAK3, Janus kinase 3; MDM2, murine double minute 2; PIPSK, phosphatidijinositol 4-phosphate5-kinase; PTPN5, protein tyrosine phosphatase, non-receptor type 5; RAP1GAP, RAP1 GTPase-activating protein; TIAM2, T-cell lymphoma invasion and metastasis 2; VASP, vasodilator-stimulated phosphopretin.

Received 20 April 2011/3 June 2011; accepted 7 June 2011 Published as BJ Immediate Publication 7 June 2011, doi:10.1042/BJ20110720

¹ Correspondence may be addressed to either of these authors (email smithdon@uw.edu or scottjdw@uw.edu).

4