Supplementary Information

Multifaceted SlyD from *Helicobacter pylori*: implication in [NiFe] hydrogenase maturation

Tianfan Cheng¹, Hongyan Li¹, Wei Xia and Hongzhe Sun (e-mail: hsun@hku.hk) Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P.R. China

¹These authors contributed equally to the study.

Circular dichroism

About 10 μ M of proteins were freshly prepared in 10 mM potassium phosphate buffer containing 50 mM (NH₄)₂SO₄ at pH 7.4. CD experiments were carried out on a JASCO J-815 circular dichroism spectrometer using a quartz cuvette with a path length of 1 mm at room temperature and scanned from 190 to 260 nm at the speed of 50 nm/min with a data interval of 0.2 nm. Each spectrum was averaged from five scans with baseline subtracted. The secondary structure fractions were estimated by the CDNN software package [1]. For thermal denaturation, 2 μ M of proteins were used in a 10-mm quartz cuvette with heating and cooling rate of 1 °C/min.

PPIase activity

RCM-T1 was used for determination of PPIase activity as previously described [2] with some modification. *E. coli* strain DH5 α cells harboring pT1LE (a modified plasmid of pA2T1-1 [3], kindly granted by U. Hahn, Universit ät Hamburg) was used with site-directed mutagenesis (generating pT1LE-S54G/P55N) for expressing (S54G, P55N)-RNase T1. (S54G, P55N)-RNase T1 was expressed and purified accordingly [3]. RCM-T1 was prepared as previously described [4]. Progress of refolding of 0.3 μ M RCM-T1 in the absence and presence of *Hp*SlyD and its variants at ambient temperature (20 °C) was followed by the increase of fluorescence at 320 nm after excitation at 268 nm on a Hitachi F-7000 fluorescence spectrophotometer.

Chaperone activity

DTT-induced insulin aggregation assay was performed to determine the chaperone activity according to a previously described method [5, 6] with minor modification. The insulin solution was diluted to a final concentration of 45 μ M in 50 mM Na₂HPO₄, 100 mM NaCl (pH 7.5) and mixed with *Hp*SlyD and its variants at 25 °C. The aggregation process was monitored by the increase in scattered light at 400 nm on a Hitachi F-7000 fluorescence spectrophotometer.

Table S1 Primers and plasmids used in this study

(A) Primers used in this study

Name	Sequence (5'-3')	Enzyme
HpSlyD-for	GGAATTC <u>CATATG</u> CAAAACCATGATTTAGAG	NdeI
HpSlyD-rev	CG <u>GAATTC</u> CTACCCATGCGAACATGAGCA	EcoRI
HpSlyD∆C-rev	CG <u>GAATTC</u> CTATTCTTCTTCGCTCACTTCCCT	EcoRI
Δ IF-1	GTGGGATGATGCCTGGGTGCCCAGTGGCCCCATAAGCTTCCTCTGG	
Δ IF-2	GCACCCAGGCATCATCCCACCACATGCCACTTTAGCGTTTCGTTTCAAGGT	
MalE-SPless	GGAATTC <u>CATATG</u> AAAATCGAAGAAGGTAAA	NdeI
MalE-Xa	CG <u>GAATTC</u> TGAAATCCTTCCCTCGAT	EcoRI
HydA-SP-up	CG <u>GAATTC</u> ATGTTCTACGATGAAA	EcoRI
HydA-SP-down	CCG <u>CTCGAG</u> CGCCTTCAAAGTCAAG	XhoI

(B) Plasmids used and constructed in this study

Name	Purpose	Source
pET32-HpSlyD Express HpSlyD		This study
pET32-HpSlyD∆C	Express HpSlyD∆C	This study
pET32-HpSlyD ΔIF	Express HpSlyD∆IF	This study
pET32-HpSlyD ΔIFΔC	Express HpSlyDΔIFΔC	This study
pETMalE	Intermediate plasmid for constructing pETMalEHis	This study
pETMalEHis	Express Φ MalE::H6	This study
pETMalE-HydASP	Express	This study
pET32a(+)	Expression plasmid vector	Novagen
pMAL-p2x	Amplification of a signal peptide-less MBP	NEB

Table S2 Thermal stability parameters and PPIase activities of HpSlyD and its variants

(A) PPIase activity data obtained from the refolding of RCM-T1 at 20 $\,^\circ\!\mathrm{C}$

	$k_{\rm cat}/{\rm K_m}({\rm M}^{-1}~{\rm s}^{-1})$	$\%^*$
HpSlyD	$1.17 \pm 0.05 \times 10^{6}$	100
Hp SlyD Δ C	$0.94\ \pm 0.05\ \times 10^{6}$	80
Hp SlyD Δ IF	$4.4 \pm 0.3 \times 10^{3}$	0.4
Hp SlyD Δ IF Δ C	$1.2 \pm 0.3 \times 10^{3}$	0.1

* %: the percentage of remaining PPIase activity (k_{cat}/K_m) of variants compared with wild-type HpSlyD

(B) Inhibition of PPIase activity HpSlyD by two immunosuppressive agents at different concentrations [‡]

Conc. (µM)	1	10
FK506	97%	60%
Rapamycin	82%	24%

[‡] Compared with k_{app} of 20 nM HpSlyD

Fig. S1 Expression and purification of *Hp*SlyD

*Hp*SlyD expressed in KMl603 *E. coli* cells harboring pET32-HpSlyD was purified into homogeneity by a three-step procedure. *Hp*SlyD shows a larger apparent molecular mass of about 25 kDa than theoretical value of 20 kDa.

Fig. S2 The determination of the molecular weight of *Hp*SlyD by ESI-MS

The mass spectra of about 50 μ M *Hp*SlyD in 10 mM ammonium acetate, pH6.4 were obtained on a LTQ Orbitrap Velos mass spectrometer (Thermo Scientific, USA) equipped with an electrospray source in positive mode. Mass range scanned from *m/z* 200-4000 Da at resolution of 60000 with total accumulation time of 2 to 3 minutes. The instrument parameters are as follow: ion spray voltage 4.0 kV, sheath gas (N₂) flow rate at 6 arbitrary units, ion source temperature 275 °C. The spectra were deconvoluted with the raw data range from *m/z* 800-3200 Da, with the threshold of resolution of 40000 and signal to noise ratio of 10. For the peaks of *Hp*SlyD with *m/z* > 2000, both charges and m/z are labeled, otherwise, only charges are labeled. The molecular weight (MH⁺) was obtained from the deconvoluted result as shown in inset.

Fig. S3 CD spectrum of 10 μ M *Hp*SlyD in 10 mM potassium phosphate, 50 mM (NH₄)₂SO₄ at pH 7.4

The spectrum was obtained from the average of five scans and smoothed using Savitzky–Golay method with 25 points of window on a Spectra Manager II software of JASCO.

Fig. S4 ¹⁵N backbone amide relaxation parameters of $HpSlyD\Delta C$

The values of T_1 , T_2 and proton-irradiated NOE for individual residues are shown as a function of residue number in the protein sequence.

Fig. S5 PPIase activities of HpSlyD and its variants

(a) The progress curves of refolding of 0.3 μ M RCM-T1 at 20 °C in the absence (black) and presence of 20 nM *Hp*SlyD (red) and 15 nM *Hp*SlyD Δ C (blue). (b) Catalytic efficiencies of refolding 0.3 μ M RCM-T1. The measured rate constants k_{app} of RCM-T1 folding are shown as function of *Hp*SlyD (\bullet), HpSlyD Δ C (Δ), *Hp*SlyD Δ IF (\blacksquare) and *Hp*SlyD Δ IF Δ C (∇). The k_{cat}/K_m values obtained from the slopes are listed in Table S2a.

Cheng, Li et al · Multifaceted SlyD from Helicobacter pylori

Fig. S6 Chaperone properties of HpSlyD and its variants

The chaperone activities were demonstrated using DTT-induced insulin aggregation assay at 25 °C. The aggregation of insulin was monitored by the increase in light scattering at 400 nm. The progress curves of 45 μ M insulin in the absence of HpSlyD (\blacktriangle) and presence of 20 μ M of HpSlyD (\bigcirc), $HpSlyD\Delta C$ (\bigcirc), $HpSlyD\Delta IF$ (\blacksquare) and $HpSlyD\Delta IF\Delta C$ (\Box), and 45 μ M of HpSlyD (\bigstar) and $HpSlyD\Delta C$ (\diamondsuit).

References

- 1. Böhm G, Muhr R, Jaenicke R (1992) Protein Eng 5:191-195
- 2. Scholz C, Stoller G, Zarnt T, Fischer G, Schmid FX (1997) EMBO J 16:54-58
- Quaas R, McKeown Y, Stanssens P, Frank R, Blöcker H, Hahn U (1988) Eur J Biochem 173:617-622
- Pace CN, Grimsley GR, Thomson JA, Barnett BJ (1988) J Biol Chem 263:11820-11825
- Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen SX, Saibil HR, Buchner J (1999) EMBO J 18:6744-6751
- Löw C, Neumann P, Tidow H, Weininger U, Haupt C, Friedrich-Epler B, Scholz C, Stubbs MT, Balbach J 2010) J Mol Biol 398:375-390