<u>Appendix</u>

Notations:

Two notational conventions are introduced for the following calculations. For a labeling pool A, A denotes the fractional enrichment, i.e.:

$$A = \frac{{}^{13}A}{[A]}$$

Where ${}^{13}A$ is the concentration of ${}^{13}C$ labeled molecule A and [A] is the total concentration of molecules A, assumed to be constant in the metabolic steady-state assumption.

The temporal derivation of the concentration of 13 C labeled molecule A is written as dA, i.e.:

$$dA = \frac{d^{13}A}{dt}$$

The composite fluxes V_{gt}^g and V_{gt}^n describing the turnover flux of the first labeled position of glutamate are defined as:

$$V_{gt}^g = \frac{V_x^g V_{tca}^g}{V_x^g + V_{tca}^g} \quad and \quad V_{gt}^n = \frac{V_x^n V_{tca}^n}{V_x^n + V_{tca}^n}$$

A) TCA cycle and Glu/Gln cycle modeling

Glial glutamate positions

The position 1 of glial acetyl-CoA is labeled as follows:

$$dAcCoA_1^g = V_{Ace} \ AcO^- - \left(V_{Ace} + V_{dil}^g\right) AcCoA_1^g \tag{1}$$

Where V_{dil}^g is the dilution flux from the metabolism of unlabeled pyruvate in the glial compartment. Working with the small pool approximation for glial acetyl-CoA (Uffmann and Gruetter 2007) $(dAcCo_1^g \cong 0 \text{ very fast compared with the large glutamate pool})$, we obtain the following relationship between the fractional enrichment of $AcCo_1^g$ and plasma AcO^- :

$$AcCoA_{1}^{g} = \frac{V_{Ace}}{\left(V_{Ace} + V_{dil}^{g}\right)} \quad AcO^{-} \equiv K_{dil} * AcO^{-}$$
⁽²⁾

 K_{dil} represents the affinity of glial cells to acetate as metabolic fuel. It was fixed to the value found with ¹³C nuclear magnetic resonance in a recent study (Duarte *et al*) in similar physiological conditions : $K_{dil} = 0.76$

The position 5 of 2-oxoglutarate labels as follows:

$$dOG_5^g = V_{tca}^g K_{dil} AcO^- + V_x^g Glu_5^g - (V_x^g + V_{tca}^g) OG_5^g$$
(3)

1

For the position 1 of 2-oxoglutarate, the corresponding equation is:

$$dOG_1^g = \frac{V_{tca}^g}{2} OG_5^g + V_x^g Glu_1^g - (V_x^g + V_{tca}^g) OG_1^g$$
(4)

The factor $\frac{V_{tca}^{g}}{2}$ is due to the fact that half of the label is flowing from OG_5^{g} to CO_2 . The effective flux from OG_5^{g} to OG_1^{g} is $\frac{V_{tca}^{g}}{2}$ (see Figure 2A).

The labeling of glial glutamate at the positions 1 and 5 is given by:

$$dGlu_{1,5}^{g} = V_{x}^{g} OG_{1,5}^{g} + V_{nt}Glu_{1,5}^{n} - (V_{x}^{g} + V_{nt}) Glu_{1,5}^{g}$$
(5)

Replacing the isolated OG_5^{g} from (5) in (3):

$$dGlu_{5}^{g} + \frac{V_{x}^{g}}{V_{x}^{g} + V_{tca}^{g}} dOG_{5}^{g}$$

$$= \frac{V_{tca}^{g} V_{x}^{g}}{V_{x}^{g} + V_{tca}^{g}} K_{dil} AcO^{-} + \frac{V_{x}^{g^{2}}}{V_{x}^{g} + V_{tca}^{g}} Glu_{5}^{g} + V_{nt} Glu_{5}^{n} - (V_{x}^{g} + V_{nt}) Glu_{5}^{g}$$
(6)

Similarly, we replace the isolated OG_1^g from (5) and OG_5^g from (5) in (4):

$$dOG_{1}^{g} = \frac{V_{tca}^{g}}{2} \frac{1}{V_{x}^{g}} \left(dGlu_{5}^{g} - V_{nt}Glu_{5}^{n} + (V_{x}^{g} + V_{nt}^{g}) Glu_{5}^{g} \right) + V_{x}^{g}Glu_{1}^{g} - \left(V_{x}^{g} + V_{tca}^{g} \right) \frac{1}{V_{x}^{g}} \left(dGlu_{1}^{g} - V_{nt}Glu_{1}^{n} + (V_{x}^{g} + V_{nt}) Glu_{1}^{g} \right)$$
(7)

 $dGlu_5^g$ isolated in equation (6) is replaced in equation (7), which becomes:

$$dGlu_{1}^{g} + \frac{v_{x}^{g}}{(v_{x}^{g} + v_{tca}^{g})} dOG_{1}^{g} + \frac{v_{x}^{g}}{(v_{x}^{g} + v_{tca}^{g})} \frac{v_{tca}^{g}}{2 v_{x}^{g}} \frac{v_{x}^{g}}{v_{x}^{g} + v_{tca}^{g}} dOG_{5}^{g} = \frac{v_{tca}^{g}{}^{2} v_{x}^{g}}{2 (v_{x}^{g} + v_{tca}^{g})^{2}} K_{dil} AcO^{-} + \frac{v_{tca}^{g} v_{x}^{g}}{2 (v_{x}^{g} + v_{tca}^{g})^{2}} Glu_{5}^{g} + V_{nt} Glu_{1}^{n} - (V_{gt}^{g} + V_{nt}) Glu_{1}^{g}$$

$$(8)$$

The differential of the labeling of the small intermediate pools of the TCA cycles was neglected (Uffmann and Gruetter 2007) compared with the differential of the labeling pools of glutamate ($dOG_1^g, dOG_5^g \ll dGlu_1^g, dGlu_5^g$). Thus, the differential equations of labeling of the positions 5 and 1 of glutamate become:

$$dGlu_5^g = V_{gt}^g K_{dil} AcO^- + V_{nt}Glu_5^n - (V_{gt}^g + V_{nt}) Glu_5^g$$
(9)

and

$$dGlu_1^g = \frac{V_{tca}^{g^2} V_x^g}{2 (V_x^g + V_{tca}^g)^2} K_{dil} AcO^- + \frac{V_{tca}^g V_x^{g^2}}{2 (V_x^g + V_{tca}^g)^2} Glu_5^g + V_{nt} Glu_1^n - (V_{gt}^g + V_{nt}) Glu_1^g$$
(10)

2

Glutamine positions

The labeling of the positions 5 and 1 of glutamine is given by:

$$dGln_{1,5}^{g} = V_{nt} Glu_{1,5}^{g} - V_{nt} Gln_{1,5}$$
(11)

Neuronal glutamate positions

The differential equations of the positions 5 and 1 of the neuronal glutamate are obtained in the same way than for glial glutamate, except that no labeling coming from acetate is entering the neuronal TCA cycle:

$$dGlu_{5}^{n} = V_{nt}Gln_{5} - (V_{gt}^{n} + V_{nt}) Glu_{5}^{n}$$
(12)

$$dGlu_1^n = \frac{V_{tca}^n V_x^{n^2}}{2 (V_x^n + V_{tca}^n)^2} Glu_5^n + V_{nt} Gln_1 - (V_{gt}^n + V_{nt}) Glu_1^n$$
(13)

B) <u>CO₂ labeling</u>

 CO_2 is labeled indirectly from AcO^- , Glu_5^g , Glu_1^g , Glu_5^n and Glu_1^n (Figure 2A).

Glial contributions

The input labeling coming from OG_5^g gives:

$$d^{11}CO_2 = \frac{V_{tca}^g}{2} OG_5^g$$
(14)

Again, with the assumption of small derivatives of the TCA intermediates compared with the other variables of the differential system, we can extract from equation (3):

$$\left(V_{x}^{g} + V_{tca}^{g}\right)OG_{5}^{g} = V_{tca}^{g}K_{dil}AcO^{-} + V_{x}^{g}Glu_{5}^{g}$$
(15)

Substituting then OG_5^g from equation (15) in equation (14) gives the indirect contribution of labeling of CO_2 from AcO^- and Glu_5^g through OG_5^g :

$$d^{11}CO_2 = \frac{V_{tca}^g}{2} \left[\frac{V_{tca}^g}{V_x^g + V_{tca}^g} K_{dil} AcO^- + \frac{V_x^g}{V_x^g + V_{tca}^g} Glu_5^g \right]$$
(16)

The input labeling coming from OG_1^g gives:

$$d^{11}CO_2 = V_{tca}^g \ OG_1^g \tag{17}$$

Working similarly by isolating OG_1^g in equation (4), we get:

$$d^{11}CO_2 = \frac{V_{tca}^g}{V_x^g + V_{tca}^g} \left[K_{dil} * \frac{V_{tca}^g}{2} \frac{V_{tca}^g}{V_x^g + V_{tca}^g} AcO^- + \frac{V_{tca}^g}{2} \frac{V_x^g}{V_x^g + V_{tca}^g} Glu_5^g + V_x^g Glu_1^g \right]$$
(18)

3

This is the indirect contribution of labeling of CO_2 from AcO^- , Glu_5^g and Glu_1^g through OG_1^g . Considering both glial labeling through OG_1^g and OG_5^g (16) and (18), we can collect the indirect fluxes coming from AcO^- , Glu_5^g and Glu_1^g .

$$From AcO^{-}: K_{dil} \frac{V_{tca}^{g}}{2} \underbrace{\frac{V_{tca}^{g}}{V_{x}^{g} + V_{tca}^{g}}}_{\substack{dilution though \\ transmitochondrial \\ flux}} + K_{dil} \frac{V_{tca}^{g}}{2} \underbrace{\frac{V_{tca}^{g}}{V_{x}^{g} + V_{tca}^{g}}}_{\substack{double dilution though \\ transmitochondrial \\ flux}} \frac{V_{tca}^{g}}{V_{tca}^{g}} \underbrace{V_{tca}^{g}}_{\substack{double dilution though \\ transmitochondrial \\ flux}} V_{tca}^{g} \underbrace{V_{tca}^{g}}_{\substack{double dilution though \\ transmitochondrial \\ flux}}} V_{tca}^{g} \underbrace{V_{tca}^{g}}_{\substack{double dilution though \\ transmitochondrial \\ flux}} V_{tca}^{g} \underbrace{V_{tca}^{g}}_{\substack{double dilution though \\ transmitochondrial \\ flux}}} V_{tca}^{g} \underbrace{V_{tca}^{g}}_{\substack{double dilution \\ transmitochondrial \\ flux}} V_{tca}^{g} \underbrace{V_{t$$

From
$$Glu_5^g$$
: $\frac{V_{tca}}{2}$ $\underbrace{\frac{V_x}{V_x^g + V_{tca}^g}}_{dilution in OG_5^g}$ $+ \frac{V_{tca}}{2}$ $\underbrace{\frac{V_x}{V_x^g + V_{tca}^g}}_{dilution in OG_5^g}$ $\underbrace{\frac{V_{tca}}{V_x^g + V_{tca}^g}}_{dilution in OG_5^g}$ $\underbrace{\frac{V_{tca}}{V_x^g + V_{tca}^g}}_{dilution in OG_5^g}$ (20)

From
$$Glu_1^g$$
: $V_{tca}^g = V_x^g = V_{gt}^g$
dilution in OG_1^g (21)

Neuronal contributions

Using the same approach, we get for the indirect fluxes coming from Glu_5^n and Glu_1^n :

From
$$Glu_5^n$$
: $\frac{V_x^n}{V_x^n + V_{tca}^n} + \frac{V_{tca}^n}{V_x^n + V_{tca}^n} \frac{V_x^n}{V_x^n + V_{tca}^n}$ (22)

From
$$Glu_1^n$$
: $V_x^n \frac{V_{tca}^n}{V_x^n + V_{tca}^n} = V_{gt}^n$ (23)

Exchanges with CO₂ dissolved in blood:

Assuming high diffusivity of CO₂ across the blood brain barrier, we obtain a typical CO₂ input flux of 20µmole/g/min (see Methods). In first approximation, we assume that all the CO₂ entering the blood brain barrier is unlabeled. Due to mass conservation at metabolic steady-state, the same CO₂ flux is leaving the brain, in addition to the 3 V_{tca}^{g} + 3 V_{tca}^{n} of CO₂ produced by the brain metabolism. Labeling of CO₂ is given by:

$$d^{11}CO_2 = V_1 AcO^- + V_2 Glu_5^g + V_3 Glu_1^g + V_4 Glu_5^n + V_5 Glu_1^n - (3 V_{tca}^g + 3 V_{tca}^n + V_{dil})^{11}CO_2$$
(24)

With V_1 , V_2 , V_3 , V_4 and V_5 given by the expressions (19), (20), (21),(22) and (23), respectively and $V_{dil} = 20 \ \mu mol/g/min$.

References

Duarte JM, Lanz B, Gruetter R Compartmentalized Cerebral Metabolism of [1,6-C]Glucose Determined by in vivoC NMR Spectroscopy at 14.1 T. *Frontiers in neuroenergetics* 3:3.

Uffmann K, Gruetter R (2007) Mathematical modeling of ¹³C label incorporation of the TCA cycle: the concept of composite precursor function. *Journal of neuroscience research* 85:3304-17.