Appendix

Notations:

Two notational conventions are introduced for the following calculations. For a labeling pool A, A denotes the fractional enrichment, i.e.:

$$
A = \frac{^{13}A}{[A]}
$$

Where ^{13}A is the concentration of 13 C labeled molecule A and [A] is the total concentration of molecules A, assumed to be constant in the metabolic steady-state assumption.

The temporal derivation of the concentration of ¹³C labeled molecule A is written as dA , i.e.:

$$
dA = \frac{d^{13}A}{dt}
$$

The composite fluxes V_{at}^g and V_{at}^n describing the turnover flux of the first labeled position of glutamate are defined as:

$$
V_{gt}^g = \frac{V_x^g V_{tca}^g}{V_x^g + V_{tca}^g} \quad \text{and} \quad V_{gt}^n = \frac{V_x^n V_{tca}^n}{V_x^n + V_{tca}^n}
$$

A) TCA cycle and Glu/Gln cycle modeling

Glial glutamate positions

The position 1 of glial acetyl-CoA is labeled as follows:

$$
dAccoA_1^g = V_{Acc} \ ACO^- - (V_{Acc} + V_{dil}^g)AccoA_1^g \tag{1}
$$

Where V_{dil}^g is the dilution flux from the metabolism of unlabeled pyruvate in the glial compartment. Working with the small pool approximation for glial acetyl-CoA (Uffmann and Gruetter 2007) ($dAcco₁^g \cong 0$ very fast compared with the large glutamate pool), we obtain the following relationship between the fractional enrichment of $Acco_1^g$ and plasma $AccO^-$:

$$
ACCoA_1^g = \frac{V_{Ace}}{(V_{Ace} + V_{dil}^g)} \ ACO^- \equiv K_{dil} * ACO^- \tag{2}
$$

 K_{dil} represents the affinity of glial cells to acetate as metabolic fuel. It was fixed to the value found with ¹³C nuclear magnetic resonance in a recent study (Duarte *et al*) in similar physiological conditions : $K_{dil} = 0.76$

The position 5 of 2-oxoglutarate labels as follows:

$$
dOG_5^g = V_{tca}^g K_{dil} A cO^- + V_x^g Glu_5^g - (V_x^g + V_{tca}^g) OG_5^g
$$
 (3)

1

For the position 1 of 2-oxoglutarate, the corresponding equation is:

$$
dO G_1^g = \frac{V_{tca}^g}{2} \ O G_5^g + V_x^g \ G l u_1^g - (V_x^g + V_{tca}^g) \ O G_1^g \tag{4}
$$

The factor $\frac{V_{tca}g}{2}$ $\frac{ca^g}{2}$ is due to the fact that half of the label is flowing from $\textit{OG}_{5}{}^{g}$ to $\textit{CO}_{2}.$ The effective flux from ${\it O}G_5{}^g$ to ${\it O}G_1{}^g$ is $\frac{{\it V_{tca}}^g} {2}$ $\frac{ca^{-}}{2}$ (see Figure 2A).

The labeling of glial glutamate at the positions 1 and 5 is given by:

$$
dGlu_{1,5}^g = V_x^g \,\, OG_{1,5}^g + V_{nt} Glu_{1,5}^n - (V_x^g + V_{nt}) \,\, Glu_{1,5}^g \tag{5}
$$

Replacing the isolated $\overline{OG}_5{}^g$ from (5) in (3):

$$
dGlu_{5}^{g} + \frac{V_{x}^{g}}{V_{x}^{g} + V_{tca}^{g}} dOG_{5}^{g}
$$
\n
$$
= \frac{V_{tca}^{g} V_{x}^{g}}{V_{x}^{g} + V_{tca}^{g}} K_{dil} A cO^{-} + \frac{V_{x}^{g^{2}}}{V_{x}^{g} + V_{tca}^{g}} Glu_{5}^{g} + V_{nt} Glu_{5}^{n} - (V_{x}^{g} + V_{nt}) Glu_{5}^{g}
$$
\n(6)

Similarly, we replace the isolated \overline{OG}_1^g from (5) and $\overline{OG}_5{}^g$ from (5) in (4):

$$
dOG_1^g = \frac{v_{tca}^g}{2} \frac{1}{v_x^g} \left(dGlu_5^g - V_{nt}Glu_5^n + (V_x^g + V_{nt}^g) Glu_5^g \right)
$$

+
$$
V_x^g Glu_1^g - (V_x^g + V_{tca}^g) \frac{1}{v_x^g} \left(dGlu_1^g - V_{nt}Glu_1^n + (V_x^g + V_{nt}) Glu_1^g \right)
$$
 (7)

 $dGlu_{5}^{g}$ isolated in equation (6) is replaced in equation (7), which becomes:

$$
dGlu_{1}^{g} + \frac{v_{x}^{g}}{(v_{x}^{g} + v_{tca}^{g})}dOG_{1}^{g} + \frac{v_{x}^{g}}{(v_{x}^{g} + v_{tca}^{g})} \frac{v_{tca}^{g}}{2 v_{x}^{g} v_{y}^{g} + v_{tca}^{g}} dOG_{5}^{g}
$$
\n
$$
= \frac{v_{tca}^{g}}{2 (v_{x}^{g} + v_{tca}^{g})^{2}} K_{dil} A cO^{-} + \frac{v_{tca}^{g} v_{x}^{g}}{2 (v_{x}^{g} + v_{tca}^{g})^{2}} Glu_{5}^{g} + V_{nt} Glu_{1}^{n} - (V_{gt}^{g} + V_{nt}) Glu_{1}^{g}
$$
\n(8)

The differential of the labeling of the small intermediate pools of the TCA cycles was neglected (Uffmann and Gruetter 2007) compared with the differential of the labeling pools of glutamate (dOG_1^g , dOG_5^g $dGlu_j^g$, $dGlu_5^g$). Thus, the differential equations of labeling of the positions 5 and 1 of glutamate become:

$$
dGlu_5^g = V_{gt}^g K_{dil} A cO^- + V_{nt} Glu_5^n - (V_{gt}^g + V_{nt}) Glu_5^g
$$
\n(9)

and

$$
dGlu_1^g = \frac{V_{tca}^{g^2}V_x^g}{2(V_x^g + V_{tca}^g)^2} K_{dil} A cO^- + \frac{V_{tca}^g V_x^{g^2}}{2(V_x^g + V_{tca}^g)^2} Glu_5^g + V_{nt} Glu_1^n - (V_{gt}^g + V_{nt}) Glu_1^g \tag{10}
$$

2

Glutamine positions

The labeling of the positions 5 and 1 of glutamine is given by:

$$
dGln_{1,5}^g = V_{nt} Glu_{1,5}^g - V_{nt} Gln_{1,5}
$$
\n(11)

Neuronal glutamate positions

The differential equations of the positions 5 and 1 of the neuronal glutamate are obtained in the same way than for glial glutamate, except that no labeling coming from acetate is entering the neuronal TCA cycle:

$$
dGlu_5^n = V_{nt}Gln_5 - (V_{gt}^n + V_{nt})\,Glu_5^n \tag{12}
$$

$$
dGlu_1^n = \frac{V_{tca}^n V_x^{n^2}}{2\left(V_x^n + V_{tca}^n\right)^2} Glu_5^n + V_{nt} Gln_1 - \left(V_{gt}^n + V_{nt}\right) Glu_1^n \tag{13}
$$

B) CO² labeling

CO₂ is labeled indirectly from $A c O^-$, $G lu_5^g$, Glu_1^g , Glu_5^u and Glu_1^n (Figure 2A).

Glial contributions

The input labeling coming from $\overline{OG_S^g}$ gives:

$$
d^{11}CO_2 = \frac{V_{tca}^g}{2} \quad OG_5^g \tag{14}
$$

Again, with the assumption of small derivatives of the TCA intermediates compared with the other variables of the differential system, we can extract from equation (3):

$$
\left(V_x^g + V_{tca}^g\right)O G_5^g = V_{tca}^g K_{dil} A c O^- + V_x^g G l u_5^g \tag{15}
$$

Substituting then $O G^g_{5}$ from equation (15) in equation (14) gives the indirect contribution of labeling of CO_2 from ACO^- and Glu_5^g through OG_5^g :

$$
d^{11}CO_2 = \frac{v_{tca}^g}{2} \left[\frac{v_{tca}^g}{v_x^g + v_{tca}^g} K_{dil} \, AcO^- + \frac{v_x^g}{v_x^g + v_{tca}^g} \, Glu_5^g \right] \tag{16}
$$

The input labeling coming from \overline{OG}_1^g gives:

$$
d^{11}CO_2 = V_{tca}^g \t OG_1^g \t (17)
$$

Working similarly by isolating \overline{OG}_1^g in equation (4), we get:

$$
d^{11}CO_2 = \frac{v_{tca}^g}{v_x^g + v_{tca}^g} \left[K_{dil} * \frac{v_{tca}^g}{2} \frac{v_{tca}^g}{v_x^g + v_{tca}^g} \ ACO^{-} + \frac{v_{tca}^g}{2} \frac{v_x^g}{v_x^g + v_{tca}^g} \ Glu_5^g + v_x^g Glu_1^g \right]
$$
(18)

This is the indirect contribution of labeling of CO_2 from AcO^- , Glu_5^g and $\,Glu_1^g$ through OG_1^g . Considering both glial labeling through \overline{OG}_1^g and \overline{OG}_5^g (16) and (18), we can collect the indirect fluxes coming from AcO^- , Glu_5^g and Glu_1^g .

From
$$
ACO^{-}
$$
: $K_{dil} \frac{V_{tca}^{g}}{2} = \underbrace{\frac{V_{tca}^{g}}{V_x^g + V_{tca}^g}}_{\substack{dilution thoughtransmitochondrial}{\text{transmitochondrial}}} + K_{dil} \underbrace{\frac{V_{tca}^{g}}{2}}_{\substack{V_x^g + V_{tca}^{g} \\ \text{double dilution thoughtransmitochondrial} \\ \text{transmitochondrial flux}} \underbrace{V_{tca}^{g}}_{\substack{V_x^g + V_{tca}^{g} \\ \text{transmitochondrial flux}}} \underbrace{V_{tca}^{g}}_{\substack{V_x^g + V_{tca}^{g} \\ \text{transmitochondrial flux}}} \tag{19}$

From
$$
Glu_5^g
$$
: $\frac{v_{tca}}{2} = \frac{v_x}{\frac{V_x^g + V_{tca}^g}{\frac{V_x^g + V_{tca$

From
$$
Glu_1^g
$$
: V_{tca}^g $\frac{V_x^g}{\frac{V_x^g + V_{tca}^g}{\frac{V_x^g + V_{tca}^g}{\frac{V_x^g + V_{tca}^g}{\frac{V_x^g}{\frac$

Neuronal contributions

Using the same approach, we get for the indirect fluxes coming from $\hbox{\it Gl} u_5^n$ and $\hbox{\it Gl} u_1^n$:

From
$$
Glu_5^n
$$
:
$$
\frac{V_x^n}{V_x^n + V_{tca}^n} + \frac{V_{tca}^n}{V_x^n + V_{tca}^n} \frac{V_x^n}{V_x^n + V_{tca}^n}
$$
 (22)

$$
\text{From } \text{Glu}_1^n: \ \ V_x^n \ \frac{V_{tca}^n}{V_x^n + V_{tca}^n} = V_{gt}^n \tag{23}
$$

Exchanges with CO² dissolved in blood:

Assuming high diffusivity of $CO₂$ across the blood brain barrier, we obtain a typical $CO₂$ input flux of 20 μ mole/g/min (see Methods). In first approximation, we assume that all the CO₂ entering the blood brain barrier is unlabeled. Due to mass conservation at metabolic steady-state, the same $CO₂$ flux is leaving the brain, in addition to the 3 $V_{tca}^g + 3 V_{tca}^n$ of CO₂ produced by the brain metabolism. Labeling of $CO₂$ is given by:

$$
d^{11}CO_2 = V_1 \, ACO^- + V_2 \, Glu_5^g + V_3 \, Glu_1^g + V_4 \, Glu_5^n + V_5 \, Glu_1^n
$$

$$
- \left(3 \, V_{tca}^g + 3 \, V_{tca}^n + V_{dil}\right)^{11} CO_2 \tag{24}
$$

With V_1 , V_2 , V_3 , V_4 and V_5 given by the expressions (19), (20), (21),(22) and (23), respectively and $V_{dil} = 20 \mu mol/g/min$.

References

Duarte JM, Lanz B, Gruetter R Compartmentalized Cerebral Metabolism of [1,6-C]Glucose Determined by in vivoC NMR Spectroscopy at 14.1 T. *Frontiers in neuroenergetics* 3:3.

Uffmann K, Gruetter R (2007) Mathematical modeling of ¹³C label incorporation of the TCA cycle: the concept of composite precursor function. *Journal of neuroscience research* 85:3304-17.