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1. SIMULATIONS

1.1 Simulation of a time-continuous process with discrete state space

As an illustration of the reconstruction approaches we shall simulate a simple model for longitudinal data,

see Figure 1 in the main paper. This model has also been used in Gunnes, Farewell, and others (2009), but

here we introduce non-monotone missingness as well. Note that this data generating model is unknown for

the statistician who may try out various statistical models for the estimation. The data generating model

is given by the Markov model and the response Ỹ (t) is defined by the score corresponding to the state

occupied at time t. Data are missing if the process is at the lower level in the figure.

The underlying process is in this case time-continuous, but we shall assume that observation only

takes place at discrete times. This lack of complete observation may yield some bias in the estimates,
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see Gunnes, Farewell, and others (2009) for an illustration of this. Nevertheless, this is a quite realistic

scenario; we would often assume that the real process is developing continuously in time even though we

observe it discretely.

Analyses have been run for two models, in both cases means have been estimated using both monotone

and non-monotone data.

Model 1

We shall first use a model where the rate of becoming unobserved (that is, going to the lower states in

Figure 1 in the main paper) is dependent on the state of the process, but where the rate of returning to

observation is independent of the state.

The parameters for model 1 are (by αij we mean the rate of transition from state i to state j): α12 =

1/2; α14 = 1/8; α21 = 1/4; α23 = 1/2; α25 = 1/4; α32 = 1/4; α36 = 1/2; α41 = 1/2; α45 = 1/2;

α52 = 1/2; α54 = 1/4; α56 = 1/2; α63 = 1/2; α65 = 1/4. The independent censoring assumption for

missingness is fulfilled since the horizontal transition rates in the observed and unobserved states are the

same, but notice that this is the CTIC assumption and not the DTIC assumption. Note also that the rate of

returning to observation (vertical transition upwards) is independent on whether the individual is in state

4, 5 or 6. In particular, this means that assumption (3.7) in the main paper is fulfilled.

We perform 1000 simulations of the model, each simulation with a sample size of 500. The initial

states occupied by the subjects at baseline are determined by a random sample drawn from a discrete

uniform distribution of the set {1,2,3}. This means that each subject is randomized to start in one of

the observed states 1, 2 or 3 with equal probability. Results for the model are given in Figure 1 and

Figure 2, where the notation LI corresponds to linear increments model, and LI (compensator) denotes

the compensator method, while LI (imputation) denotes the imputation method. The curves show the
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Fig. 1. Model 1: Monotone missing data. Estimated mean values by the imputation method and the compensator

method compared to observed and true (empirical) values.

mean values computed from all data whether observable or not (“empirical”), from the observed data

(“observed”), and from two estimation methods: the compensator one, and the imputation. One sees that

the estimated curves are much closer to the empirical (that is “true” curve) than they are to the simple

mean of the observations (“observed”). Hence, the methods used give a considerable correction. Note that

there is a systematic difference between the estimates and the empirical (that is “true” value); this is due

to the discretization, see Gunnes, Farewell, and others (2009). In other words, the bias is due to only the

CTIC assumption being fulfilled, and not the DTIC assumption. Hence, the bias is not in contradiction to

the unbiasedness results proved in this paper.

One sees from the figures that for monotone data the imputation and the compensator analyses give

the same results. This is not the case for the non-monotone analyses where apparently the imputation

approach gives less bias and less variance.

The variances are given in Figure 3 and Figure 4, respectively. As expected, the monotone data give

larger variance than the non-monotone ones.
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Fig. 2. Model 1: Non-monotone missing data. Estimated mean values by the imputation method and the compensator

method compared to observed and true (empirical) values.
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Fig. 3. Model 1: Monotone missing data. Variance of values estimated by imputation and the compensator method.

Model 2

We now modify the previous model by letting all horizontal transitions have the same rates as before, but

changing the rate of some vertical transitions. More specifically, we introduce the following new rates:

α14 = 1/2; α36 = 1/8; α41 = 1/8; α52 = 1/4. Note that the independent censoring assumption for
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Fig. 4. Model 1: Non-monotone missing data. Variance of values estimated by imputation and the compensator

method.

missingness is still fulfilled since the horizontal transition rates in the observed and unobserved states are

the same. However, the rate of returning to observation (vertical transition upwards) is now dependent on

whether the individual is in state 4, 5 or 6, with an increasing likelihood of returning with increasing state

number. Hence, assumption (3.7) in the main paper is not fulfilled.

Results for the model are given in Figure 5 and Figure 6. One sees again that for monotone data the

imputation and the compensator analysis give the same results. For the non-monotone analysis we see a

difference between the two methods, but this is in a different direction as seen for Model 1. Part of the

bias will again be due to discretization, see Gunnes, Farewell, and others (2009).

The variances are shown in Figure 7 and Figure 8, respectively.
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Fig. 5. Model 2: Monotone missing data. Estimated mean values by imputation and the compensator method compared

to observed and true (empirical) values.
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Fig. 6. Model 2: Non-monotone missing data. Estimated mean values by imputation and the compensator method

compared to observed and true (empirical) values.
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Fig. 7. Model 2: Monotone missing data. Variance of values estimated by imputation and the compensator method.
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Fig. 8. Model 2: Non-monotone missing data. Variance of values estimated by imputation and the compensator

method.
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1.2 Simulation of a time-discrete continuous response

We shall now consider an example where the process is discrete in time, but the response is on a continuous

scale, that is, the opposite situation of the previous example.

Consider the case m = 1, that is, a univariate response for each individual at each time. Assume

Ỹi(0) = 0 and let the vector ∆Ỹ (t) consist of independent normally distributed random variables with

expectation 0.2 and standard deviation 1. Assume that the increments at different times are independent

as well.

We study the effects of the missingness rules defined below. In each case we present results for a single

simulation of 100 individuals observed over 20 time points.

(i) For t > 1, Ỹi(t) is missing if Ỹi(t − 1) > a. Since the missingness rule is determined by Ft−1 at

any time t, the DTIC assumptions (2.4) and (2.7) in the main paper will both be automatically fulfilled

in this case. The assumption (3.7) in the main paper will however not be fulfilled, implying that the non-

monotone estimation may be biased. Results from a simulation is shown in Figure 9 for the monotone

case and in Figure 10 for the non-monotone case.

(ii) For t > 1, Ỹi(t) is missing if Ỹi(t − 1) > a and if Ỹi(t − 1) is observed. If the previous mea-

surement, Ỹi(t − 1), is not observed then Ỹi(t) shall be observed, meaning that missingness can only be

encountered at single times, there can never be two missing in a row for an individual. However, there can

be several isolated occasions with missingness. The intention of this model is to consider the impact of

sporadic missingness. Since the missingness rule is determined by Ft−1 at any time t, the DTIC assump-

tions (2.4) and (2.7) in the main paper will both be automatically fulfilled in this case. The assumption

(3.7) in the main paper will automatically be fulfilled since the individual always returns to observation

after a single missing occasion. Results from a simulation is shown in Figure 11 for the monotone case
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Fig. 9. Monotone case, missing rule (i): Estimated curves by the compensator and the imputation method, compared

to mean of all measurements (empirical) and of observed measurements.
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Fig. 10. Non-monotone case, missing rule (i): Estimated curves by the compensator and the imputation method,

compared to mean of all measurements (empirical) and of observed measurements.

and in Figure 12 for the non-monotone case.
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Fig. 11. Monotone case, missing rule (ii): Estimated curves by the compensator and the imputation method, compared

to mean of all measurements (empirical) and of observed measurements.
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Fig. 12. Non-monotone case, missing rule (ii): Estimated curves by the compensator and the imputation method,

compared to mean of all measurements (empirical) and of observed measurements.


