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Supplementary text

Among the proteins that show complex patterns of PTMs, we found many structural proteins
and chaperones (Fig.2B and Supplementary Table 1). For example, the translational GTPase
EF-Tu (Tuf, Mpn665) associates with many protein complexes in M. pneumoniae (Kuhner et
al, 2009) and has been proposed to act as a cytoskeletal factor involved in cell shape
maintenance (Defeu Soufo et al, 2010) and adhesion to extracellular matrix of epithelial cells
(Balasubramanian et al, 2009). We found two phosphorylation and 12 lysine acetylations for
EF-Tu (Fig. 2C and Supplementary Table 1), including a conserved Thr383 located within its
carboxy-terminal domain that is required for adhesion. Such extensive pattern of modification
may account for EF-Tu multi-functionality and may be important for M. pneumoniae
pathogenicity.

Eight of nine protein chaperones in M. pneumoniae, were lysine acetylated and four
carried additional phosphorylation sites (Fig. 2A; COG class O). For example eight acetyl
lysines were characterized for ClpB that localize in the substrate-binding (K286, K323,
K368) and -discriminating (K28) domains and two regions, NBD1 (K191) and NBD2 (K417,
K561), responsible for ClpB hexamer oligomerization. This suggests that lysine acetylation
exerts pleiotropic effect on chaperonin activity, reminiscent of the complex regulation
observed for the eukaryotic chaperone Hsp90 (Scroggins et al, 2007).

Four proteins of previously unknown functions, Mpn256, Mpn387, Mpn400 and
Mpn454, cluster together with the sets of cytadherence proteins that are downregulated upon
PknB (Mpn248) deletion (Supplementary Fig. 5). Consistent with a possible role in cell
adhesion, both Mpn400 and Mpn454 have predicted transmembrane domains. Furthermore,
mpn454 belongs to the same operon as the known cytadherence proteins Hmw3 (Mpn452)
and P30 (Mpn453) and Mpn400 was found to copurify in the Triton X100 insoluble fraction
together with other cytoskeletal proteins (Regula et al, 2001). Also, genetic studies suggested
a role for Mpn387 in maintenance of the attachment organelle and gliding

motility(Hasselbring et al, 2006).
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Supplementary Figure 1 | Quality measure of the dataset. A) the fraction of the proteins unique to our dataset, unique to the
literature, either found in Mycoplasma pneumoniae or in other bacteria, and the overlap between the literature and our dataset. B)
shows the distribution of the sequence coverage of the identified proteins including the median of the sequence coverage. C)shows
the distribution in how many sample the lysine-acetylated peptide, the phosphorylated peptide or identified proteins. Only two

samples were enriched for lysine-acetylated peptides, four samples were used for phosphoproteome analysis and all six samples
were used for protein identification. The correlation between quantification between technical duplicates (panel D) and biological

duplicates (panel E) for lysine acetylated, phosphorylated peptides and quantified proteins. F) Reproducibility of identifications of
proteins and peptides between mixes with the same k.o. strains (mixed biological and technical duplicates) and up- and down-regulation
of technical duplicates (same culture samples with swapped labels) and biological duplicates (different culture samples). If technical
duplicates of quantifications were available, only those were both ratios are in the same direction, above the threshold and significant
are considered in the final table of regulated proteins/peptides. Thus technical reproducibility after filtering is 100%, biological
reproducibility after this filtering of up-/down-regulations is higher than before filtering.
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Supplementary Figure 2 | Validation of acetylated proteins by Western Blot. A)Result matrix
of validation experiments. The columns give the systematic name, protein name and the
molecular weight (MW) of each validation candidate. There color coded matrix rows below the
validation candidate names indicate, whether a protein was (i) identified as being acetylated in
the mass-spectrometric analysis, (ii) identified being acetylated by Western blot and (iii) identi-
fied being purified prior to Western blot acetlyation analysis. Green indicates a detected signal,
red represents no detected signal. B) is Western blot raw data supporting the detection of the
affinity purified validation candidate proteins via an a-calmodulin binding peptide antibody. C)
is Western blot raw data supporting the detection of the acetylated validation candidate
proteins via an a-acetyllysine antibody. As positive control a Western blot of acetylated bovine
serum albumin detected via the a-acetyllysine antibody is shown.
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Supplementary Figure 3 | The protein identification has not bias for physio-chemical
properties such as isoelectric point (panel a), hydrophobicity (panel b), molecular
weight (panel c) and instability index (panel d). The identified proteins (dark blue) are
compared to the M. pneumoniae proteins annotated in SwissProt. Each parameter was calcu-
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Supplementary Figure 4 | Clustering of protein
abundance changes reveals new cytadherence
proteins and functional implications of PrpC in
cell cycle. The regulated proteins were clustered
according to their relative abundance changes
between the different strains. We propose four
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Supplementary Figure 5 | Validation of protein abundance changes by western blot. In each of the panel
the signals from western blot membrane, the quantification of the western blot signals and the regulation
expected from mass spectrometric data (Supplementary table 1) are shown. The proteins analyzed were a,
P200 (Mpn567), Mpn311 and RpsD(Mpn446), b, P1 (Mpn141), P65 (Mpn309) and RpsD (Mpn446), ¢, Mpn312
and GroL (Mpn573), d, Hmw2 (Mpn310) and RpsD (Mpn446), e, Hmw1 (Mpn447) and Tuf (Mpn665), f, the two
cleavage products of Mpn142, Mpn199 and RpsD (Mpn446), g, Mpn456, FtsZ (Mpn317), P30 (Mpn453) and
RpsD (Mpn446).
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Supplementary Figure 6 | Clustering of phospho and acetyl-K sites. Only regulated sites were selected for cluster-
ing. Clustering was done with uncentered correlation and hclust as implemented in R. A clustering of phosphosites, B
clustering of acetyl-K sites.
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Supplementary Figure 9 | Sedimentation of
GroS and RplA on sucrose gradients. A)

Lysis of samples from wt, PknB ko and PrpC ko
was performed by supplementing the

lysis buffer with the deacetylase inhibitors
nicotinamid (10 mM) and butyric acid (50 mM).
Volume of 30 pl of samples were layered on a

top of 4 ml sucrose gradient (10-35%) and
separated by 14 hours centrifugation at

130 000 g at 4°C.The gradient was subsequently
divided into 22 fractions per 165 ul. Fractions
were analyzed by SDS-PAGE and western blot.
Polyclonal antibodies were used to detect the
GroS protein (Mpn574) and as negative control
50S ribosomal protein RIpA (Mpn220); final
detection was done using secondary antibodies.
Band intensities were normalized for equal sample
loading and in each fraction the percentage of
total protein amounts of the total sample was
calculated. B) Averages and sd’s were calculated
over three independent sucrose gradient
separation experiments.We observed a significant
difference (p < 0.01) of GroS in fractions 9 and 10
between wt and PrpC ko. No significant differences
were found for RplA.



Normalized peptide signal

Measured peptide signal Peptide signal intensities intensities corrected for Peptide signal intensities
A intensities: normalized for mixing error: protein median: after outlier filtering:
525 r=0.943 525 > 25 r=0.971 225 r=0.994
G @ g7 @
g 20 §20 § 20 g 20
£ E £ £
g 15 _g 15 g 15 ?;15
@10 @10 “o10 @10
D [e)] o] ()]
<) o) o} <)
L 5 = 5 - 5 -5
5 10 15 20 25 5 10 15 20 35 5 10 15 20 25 5 10 15 20 25
log, signal intensity log, signal intensity log, signal intensity log, signal intensity
B
> 25 r=0.683 525 r=0.585 =25 r=0.932 25 r=0.993
G @ ey @ ‘ G ;
g 20 g 20 i g 20 / §20 i
£ £ £ P £ 4
5 s 315 3 g 4
> k=) =) o '
2 10 @10 %10 3 10
D D ()] [}
] ] ° °
5 5 5 5
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
log, signal intensity log, signal intensity log, signal intensity log, signal intensity
C X
r=0.980 Y r=0.988 e r=0.986 r=0.993
525 F 525 > 257 225 t
G G # @ G s
£ 20- g 20 S 20 g 20 Va
£ < ' £ £
= 151 Z15 = 15 =15
5 5 5 5
@ 101 % 10 @ 101 ‘w10
o o o o
o 5 o 5 _O 5 2 5
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
log, signal intensity log, signal intensity log, signal intensity log, signal intensity

Supplementary Figure 10 | The effect of the peptide signal intensity normalizations in each step during the outlier
detection is shown with the help of three examples. The signal intensities of all analyzed proteome combinations are

displayed for all quantified peptides (panel A), all peptides originating from the regulated protein Hmw2 (Mpn310, panel

B) and all the peptides of the not-regualted protein Ef-Tu (Mpn665, panel Q. In each diagram the pearson correlation is

indicated in the top left corner. For each of these examples in panel A-C the diagrams from left to right show the compari-

son of these signal intensities that were measured, after they were normalized for mixing errors, after correction for

protein abundance changes and after outlier removal,, respectively. The signal intensities used to determine a particular

abundance change are plotted against each other. The signal intensities should therefore be distributed on a diagonal.



