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1. ASYMPTOTIC PROPERTIES

We state in Theorems S.1-S.4 the asymptotic properties of the NPMLEs described in Sections

2.2-2.4 of the main paper and provide the proofs of the theorems. For each theorem, it is

necessary to verify that the parameters are identifiable and the information matrices along

all non-trivial parametric submodels are non-singular. We state those intermediate results in

Lemmas S.1-S.8.

1.1 Cross-sectional studies

We impose the following conditions.

CONDITION S.1 If Pα,β,ξ(Y|X, H) = Peα,eβ,eξ(Y|X, H) for any H = (h, h) and H = (h, h†),

then α = α̃, β = β̃, and ξ = ξ̃.

CONDITION S.2 If there exists a constant vector ν such that νT∇α,β,ξ logPα,β,ξ(Y|X, H) =

0 for any H = (h, h) and H = (h, h†), then ν = 0.

CONDITION S.3 If there exists a function a(H) and a constant vector b such that a(H) +

bTD(X, H) = 0 with probability one, then a = 0 and b = 0.

REMARK S.1 Condition S.1 ensures that (α,β, ξ) are identifiable from the genotype data

while Condition S.2 ensures nonsingularity of the information matrix. All commonly used

regression models, particularly generalized linear (mixed) models with design vectors in the

form of (2.1), satisfy these two conditions. Condition S.3 pertains to the identifiability of ζ.
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This condition holds under all common modes of inheritance for the ζs,k,l provided that X is

linearly independent given H.

LEMMA S.1 If two sets of parameters (θ, F ) and (θ̃, F̃ ) yield the same joint distribution of

the data, then θ = θ̃ and F = F̃ .

Proof: Suppose that

∑

H∈S(G)

Pα,β,ξ(Y|X, H)Pζ,F (X|H)Pγ(H) =
∑

H∈S(G)

Peα,eβ,eξ(Y|X, H)Peζ, eF (X|H)Peγ(H).

Letting G = 2h or G = h+ h† and integrating over Y on both sides, we obtain

Pζ,F (X|H)Pγ(H) = Peζ, eF (X|H)Peγ(H).

Integrating over X on both sides then yields that Pγ(H) = Peγ(H). By Lemma 1 of Lin

and Zeng (2006), γ = γ̃. Thus, Pζ,F (X|H) = Peζ, eF (X|H). It follows from the definition of

Pζ,F (X|H) that

exp{(ζ − ζ̃)TD(X, H)}f(X)

f̃(X)
=

∫
x

exp{ζTD(x, H)}dF (x)
∫

x
exp{ζ̃TD(x, H)}dF̃ (x)

.

By setting H = (h0, h
′
0), we obtainD(X, H) = 0, so the above equation reduces to f(x) = f̃(x)

for any x. It then follows from Condition S.3 that ζ = ζ̃. Therefore, Pα,β,ξ(Y |X, H) =

Peα,eβ,eξ(Y |X, H) for any H = (h, h) or H = (h, h†). By Condition S.1, α = α̃, β = β̃ and

ξ = ξ̃.

LEMMA S.2 If there exist a vector µθ ≡ (µT
α,β,ξ,µ

T
γ ,µ

T
ζ )T and a function ψ(x) with

E[ψ(X)] = 0 such that µT
θ lθ(θ0, F0) + lF0(θ0, F0)[

∫
ψ dF0] = 0, where lθ is the score function

for θ, and lF0 [
∫
ψ dF0] is the score function for F along the submodel F0 + ε

∫
ψ dF0 with

scalar ε, then µθ = 0 and ψ = 0.

Proof: We wish to verify that if there exist a vector µθ ≡ (µT
α,β,ξ,µ

T
γ ,µ

T
ζ )T and a function

ψ(x) with E[ψ(X)] = 0 such that

µT
θ lθ(θ0, F0) + lF0(θ0, F0)[

∫
ψ dF0] = 0, (S.1)
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where lθ is the score function for θ, and lF0 [
∫
ψ dF0] is the score function for F along the

submodel F0 + ε
∫
ψ dF0 with scalar ε, then µθ = 0 and ψ = 0. To this end, we set G = 2h

or G = h+ h†. Then (S.1) becomes

µT
α,β,ξ∇α,β,ξ logPα0,β0,ξ0

(Y|X, H) + µT
γ∇γ logPγ0

(H)

+µT
ζD(X, H)−

µT
ζ

∫
x

exp{ζT
0D(x, H)}D(x, H)dF0(x)∫

x
exp{ζT

0D(x, H)}dF0(x)

+ψ(X)−
∫

x
exp{ζT

0D(x, H)}ψ(x)dF0(x)∫
x

exp{ζT
0D(x, H)}dF0(x)

= 0. (S.2)

Taking the expectation with respect to Pα0,β0,ξ0
(Y|X, H) yields

µT
γ∇γ logPγ0

(H) + µT
ζD(X, H)−

µT
ζ

∫
x

exp{ζT
0D(x, H)}D(x, H)dF0(x)∫

x
exp{ζT

0D(x, H)}dF0(x)

+ψ(X)−
∫

x
exp{ζT

0D(x, H)}ψ(x)dF0(x)∫
x

exp{ζT
0D(x, H)}dF0(x)

= 0. (S.3)

Since D(x, H) = 0 for any x under H = (h0, h
′
0), we have

µT
γ∇γ logPγ0

(h0, h
′
0) + ψ(X)−

∫

x

ψ(x)dF0(x) = 0.

This implies that ψ(x) is constant over x, so ψ = 0. Thus, (S.3) reduces to

µT
γ∇γ logPγ0

(H) + µT
ζD(X, H)−

µT
ζ

∫
x

exp{ζT
0D(x, H)}D(x, H)dF0(x)∫

x
exp{ζT

0D(x, H)}dF0(x)
= 0.

By Condition S.3, µζ = 0. It then follows from Lemma 1 of Lin and Zeng (2006) that µγ = 0.

Hence, (S.2) reduces to µT
α,β,ξ∇α,β,ξ logPα0,β0,ξ0

(Y|X, H) = 0. By Condition S.2, µα = 0,

µβ = 0, and µξ = 0.

THEOREM S.1 Under Conditions S.1-S.3, |θ̂− θ0|+ supx |F̂ (x)− F0(x)| → 0 almost surely.

In addition, n1/2(θ̂−θ0) converges in distribution to a zero-mean normal random vector whose

covariance matrix attains the semiparametric efficiency bound.

Proof: We first prove the consistency of θ̂ and F̂ . Because θ̂ is bounded and F̂ is a distribution

function, it follows from Helly’s selection theorem that, for any subsequence of θ̂ and F̂ , there
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exists a further subsequence, still denoted as θ̂ and F̂ , such that θ̂ → θ∗ and F̂ → F ∗ in

distribution. It suffices to show θ∗ = θ0 and F ∗ = F0. Since F̂ maximizes the likelihood

function and its jump sizes are positive, there exists a Lagrange multiplier λ̂ such that

1

F̂{Xk}
−

n∑

i=1

∑
H∈S(Gi)

Pbα,bβ,bξ(Yi|Xi, H)Pbγ(H) exp{bζTD(Xi,H)} exp{bζTD(Xk ,H)}
[
R
x exp{bζTD(x,H)}d bF (x)]2

∑
H∈S(Gi)

Pbα,bβ,bξ(Yi|Xi, H)Pbγ(H) exp{bζTD(Xi,H)}
R
x exp{bζTD(x,H)}d bF (x)

− λ̂ = 0,

where F̂{Xk} is the jump size of F̂ at Xk. Due to the constraint that
∑

k F̂{Xk} = 1, the

above equation implies that λ̂ = 0. Define F̃ as a distribution function with jumps at the Xk’s

such that the jump size is proportional to




n∑

i=1

∑
H∈S(Gi)

Pα0,β0,ξ0
(Yi|Xi, H)Pγ0

(H)
exp{ζT

0 D(Xi,H)} exp{ζT
0 D(Xk,H)}

[
R
x

exp{ζT
0 D(x,H)}dF0(x)]2

Pα0,β0,ξ0
(Yi|Xi, H)Pγ0

(H)
exp{ζT

0 D(Xi,H)}R
x

exp{ζT
0 D(x,H)}dF0(x)



−1

.

By the Glivenko-Cantelli theorem, F̃ uniformly converges to F0. In addition, F̂ is absolutely

continuous with respect to F̃ , and dF̂ /dF̃ converges uniformly to some positive function g.

Finally, since n−1 log{Ln(θ̂, F̂ )/Ln(θ0, F̃ )} ≥ 0, we can take the limit as n → ∞. Thus, the

Kullback-Leibler information for (θ∗, F ∗) is non-positive, so the density under (θ∗, F ∗) is the

same as the true density. It then follows from Lemma S.1 that θ∗ = θ0 and F ∗ = F0. This

establishes the consistency of (θ̂, F̂ ). The weak convergence of F̂ to F0 can be strengthened

to the uniform convergence since F0 is a continuous distribution function.

To derive the asymptotic distribution, we consider the score equation along the submodel

(θ̂ + εv, dF̂ + ε(ψ −
∫
ψdF̂ )), where v is a vector with norm bounded by 1, and ψ is any

function with
∫
ψdF0 = 0 and with total variation bounded by 1. The score equation takes

the form

√
n Ω1(v, ψ)T(θ̂ − θ0) +

√
n

∫
Ω2(v, ψ)d(F̂ − F0) = Gn

{
lTθ v + lF [ψ]

}
+ op(1),

where Gn denotes the empirical measure, lθ is the score function for θ0, lF is the score operator

for F0, (Ω1,Ω2) is a linear operator of the first-order Fredholm-type which maps (v, ψ) to the

same space as (v, ψ), and op(1) means a random variable converging in probability to zero
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uniformly in v and ψ. By some algebra, (Ω1,Ω2)[v, ψ] = 0 implies that the Fisher information

along the submodel is zero, so v = 0 and ψ = 0 by Lemma S.2. Thus, (Ω1,Ω2) is invertible.

We then verify all the conditions in Theorem 3.3.1 of van der Vaart and Wellner (1996). Hence,

√
n(θ̂ − θ0, F̂ − F0) weakly converges to a mean-zero Gaussian process.

In light of the above derivation, the influence function for θ̂ is a linear combination of

some lTθ v + lF [ψ]. Thus, the influence function lies on the tangent space spanned by the score

functions and thus must be the efficient influence function. This means that θ̂ is asymptotically

efficient in that its limiting covariance matrix attains the semiparametric efficiency bound.

1.2 Case-control studies with rare disease

We impose the following identifiability condition.

CONDITION S.4 If α + βTZ(X, H) = α̃ + β̃
TZ(X, H) for any H = (h, h) and H = (h, h†),

then α = α̃ and β = β̃.

LEMMA S.3 If two sets of parameters (θ, F ) and (θ̃, F̃ ) yield the same joint distribution,

then θ = θ̃ and F = F̃ .

Proof: Suppose that

{∑
H∈S(G) exp{βTZ(X,H)}Pζ ,F (X|H)Pγ(H)

∫
x

∑
H exp{βTZ(x,H)}Pζ ,F (x|H)Pγ(H)dx

}Y{ ∑

H∈S(G)

Pζ,F (X|H)Pγ(H)

}1−Y

=

{∑
H∈S(G) exp{β̃TZ(X, H)}Peζ, eF (X|H)Peγ(H)

∫
x

∑
H exp{β̃TZ(x, H)}Peζ, eF (x|H)Peγ(H)dx

}Y{ ∑

H∈S(G)

Peζ, eF (X|H)Peγ(H)

}1−Y
. (S.4)

Setting Y = 0 and G = 2h or G = h+ h† in (S.4), we obtain

Pζ,F (X|H)Pγ(H) = Peζ, eF (X|H)Peγ(H).

Integrating over X on both sides yields Pγ(H) = Peγ(H), so γ = γ̃. Thus, Pζ,F (X|H) =

Peζ, eF (X|H). By the arguments in the proof of Lemma S.1, f = f̃ and ζ = ζ̃. Letting Y = 1
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and G = 2h or G = h + h† in (S.4), we see that exp{(β − β̃)TZ(X, H)} must be a constant.

It then follows from Condition S.4 that β = β̃.

LEMMA S.4 If there exist a vector µθ ≡ (µT
β ,µ

T
γ ,µ

T
ζ )T and functions ψ(x) with E[ψ(X)] = 0

such that

µT
θ lθ(θ0, F0) + lF (θ0, F0)[

∫
ψ dF0] = 0,

where lθ is the score function for θ, and lF [
∫
ψ dF0] is the score function for F along the

submodel F0 + ε
∫
ψ dF0, then µθ = 0 and ψ = 0.

Proof: We wish to show that if there exist a vector µθ ≡ (µT
β ,µ

T
γ ,µ

T
ζ )T and functions ψ(x)

with E[ψ(X)] = 0 such that

µT
θ lθ(θ0, F0) + lF (θ0, F0)[

∫
ψ dF0] = 0, (S.5)

where lθ is the score function for θ, and lF [
∫
ψ dF0] is the score function for F along the

submodel F0 + ε
∫
ψ dF0, then µθ = 0 and ψ = 0. To this end, we choose Y = 0 and G = 2h

or G = h+ h†. Then (S.5) becomes

µT
γ∇γ logPγ0

(H) + µT
ζD(X, H)−

µT
ζ

∫
x

exp{ζT
0D(x, H)}D(x, H)dF0(x)∫

x
exp{ζT

0D(x, H)}dF0(x)

+ψ(X)−
∫

x
exp{ζT

0D(x, H)}ψ(x)dF0(x)∫
x

exp{ζT
0D(x, H)}dF0(x)

= 0. (S.6)

With H = (h0, h
′
0), (S.6) reduces to µT

γ∇γ logPγ0
(h0, h

′
0) + ψ(X) −

∫
x
ψ(x)dF0(x) = 0. This

implies that ψ(x) is constant, so it must be zero. Thus, (S.6) reduces to

µT
γ∇γ logPγ0

(H) + µT
ζD(X, H)−

µT
ζ

∫
x

exp{ζT
0D(x, H)}D(x, H)dF0(x)∫

x
exp{ζT

0D(x, H)}dF0(x)
= 0.

By Condition S.3, µζ = 0, so (S.6) further reduces to µT
γ∇γ logPγ0

(H) = 0. By Lemma 1

of Lin and Zeng (2006), µγ = 0. Setting Y = 1 and G = 2h or G = h + h†, we see that

µT
βZ(X, H) must be a constant. By Condition S.4, µβ = 0.

We provide a mathematical definition of rare disease in Condition S.5 and state the asymp-

totic results in Theorem S.2.
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CONDITION S.5 Pr(Yi = 1|Xi, Hi) = an exp{βT
0Z(Xi, Hi)}/[1 + an exp{βT

0Z(Xi, Hi)}],

i = 1, . . . , n, where an = o(n−1/2).

THEOREM S.2 Assume that Conditions S.3-S.5 hold and n1/n→ q ∈ (0, 1). Then |θ̂−θ0|+

supx |F̂ (x) − F0(x)| → 0 almost surely, and n1/2(θ̂ − θ0) converges in distribution to a zero-

mean normal random vector whose covariance matrix attains the semiparametric efficiency

bound.

Proof: Let P̃n be the probability measure generated by the likelihood function given in (2.8)

and let Pn0 be the true likelihood function. Since an = o(n−1/2), we have log P̃n/Pn0 → ePn or Pn0

1. By LeCam’s lemma, P̃n and Pn0 are equivalent. Thus, the asymptotic properties under the

true likelihood is equivalent to those under the the approximate likelihood given in (2.8). In

other words, we can assume that data are generated from (2.8). Hence, the conclusion of the

theorem follows from the arguments in the proof of Theorem S.1.

1.3 Case-control studies with known disease rate

LEMMA S.5 If two sets of parameters (θ, F ) and (θ̃, F̃ ) yield the same joint distribution,

then θ = θ̃ and F = F̃ .

Proof: Suppose that
∑

H∈S(G)

Pα,β(Y |X,H)Pζ,F (X|H)Pγ(H) =
∑

H∈S(G)

Peα,eβ(Y |X,H)Peζ , eF (X|H)Peγ(H).

Letting G = 2h or G = h+ h†, we have

Pα,β(Y |X,H)Pζ,F (X|H)Pγ(H) = Peα,eβ(Y |X,H)Peζ, eF (X|H)Peγ(H). (S.7)

Set Y = 0 or 1 in (S.7). The summation of the two resulting equations yields

Pζ,F (X|H)Pγ(H) = Peζ, eF (X|H)Peγ(H).

By the arguments in the proof of Lemma S.3, γ = γ̃, f = f̃ , and ζ = ζ̃. Then (S.7) reduces

to exp
{

(α− α̃) + (β − β̃)TZ(X, H)
}

= 1. By Condition S.4, α = α̃ and β = β̃.
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LEMMA S.6 If there exist a vector µθ ≡ (µα,µ
T
β ,µ

T
γ ,µ

T
ζ )T and a function ψ with E[ψ(X)] = 0

such that

µT
θ lθ(θ0, F0) + lF (θ0, F0)[

∫
ψ dF0] = 0,

where lθ is the score function for θ, and lF [
∫
ψ dF0] is the score function for F along the

submodel F0 + ε
∫
ψdF0 that satisfies the constraint Pr(Y = 1) = p1, then µθ = 0 and ψ = 0.

Proof: We wish to show that if there exist a vector µθ ≡ (µα,µ
T
β ,µ

T
γ ,µ

T
ζ )T and functions ψ

with E[ψ(X)] = 0 such that

µT
θ lθ(θ0, F0) + lF (θ0, F0)[

∫
ψ dF0] = 0, (S.8)

where lθ is the score function for θ, and lF [
∫
ψ dF0] is the score function for F along the

submodel F0 + ε
∫
ψdF0 that satisfies the constraint Pr(Y = 1) = p, then µθ = 0 and ψ = 0.

With G = 2h or G = h+ h†, (S.8) becomes

(µα + µT
βZ(X, H))

[
Y − exp{α0 + βT

0Z(X, H)}
1 + exp{α0 + βT

0Z(X, H)}

]
+ µT

γ∇γ logPγ0
(H) + µT

ζD(X, H)

−
µT
ζ

∫
x

exp{ζT
0D(x, H)}D(x, H)dF0(x)∫

x
exp{ζT

0D(x, H)}dF0(x)
+ ψ(X)−

∫
x

exp{ζT
0D(x, H)}ψ(x)dF0(x)∫

x
exp{ζT

0D(x, H)}dF0(x)
= 0.

The difference of the two equations under Y = 1 and Y = 0 yields µα + µT
βZ(X, H) = 0. By

Condition S.4, µα = 0 and µβ = 0. It then follows from the arguments in the proof of Lemma

S.4 that µζ = 0, µγ = 0, and ψ = 0.

THEOREM S.3 Under Conditions S.3-S.4, the results of Theorem S.2 hold.

Proof: First, we prove the consistency. Since θ̂ is bounded and F̂ is a distribution function, for

any subsequence of (θ̂, F̂ ), there exists a further subsequence, still denoted as (θ̂, F̂ ), such that

θ̂ → θ∗, and F̂ weakly converge to F ∗. The consistency will hold if we can show that θ∗ = θ0

and F ∗ = F0. We abbreviate η(x,x0, (h, h
′), (h0, h

′
0)) and Pα,β(Y |x, H)Pγ(H) as η(x, H) and

q(α,β,γ,x, H, Y ), respectively. After differentiating the log-likelihood function with respect
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to the jump sizes of F , we see that there exist some Lagrange multipliers λ̂1 and λ̂2 such that,

for k = 1, . . . , n,

1

F̂{Xk}
−

n∑

i=1

∑
H∈S(Gi)

q(α̂, β̂, γ̂,Xi,H, Yi)η(Xi,H)η(Xk,H)/{
∫
x η(x,H)dF̂ (x)}2

∑
H∈S(Gi)

q(α̂, β̂, γ̂,Xi,H, Yi)η(Xi,H)/
∫
x η(x,H)dF̂ (x)

−λ̂2

∑

H

[
q(α̂, β̂, γ̂,Xk, H, 1)η(Xk, H)∫

x
η(x, H)dF̂ (x)

− η(Xk, H)
∫

x
q(α̂, β̂, γ̂,x, H, 1)η(x, H)dF̂(x)

{
∫

x
η(x, H)dF̂ (x))}2

]
−λ̂1 = 0.

In addition, λ̂1 and λ̂2 satisfy the constraint equations

n∑

k=1

F̂{Xk} = 1,

n∑

k=1

∑

H

q(α̂, β̂, γ̂,Xk, H, 1)
η(Xk, H)∫

x
η(x, H)dF̂ (x)

F̂{Xk} = p1.

It follows that λ̂1 = 0. Thus,

{
n∑

i=1

∑
H∈S(Gi)

q(α̂, β̂, γ̂,Xi,H, Yi)η(Xi,H)η(Xk,H)/{
∫
x η(x,H)dF̂ (x)}2

∑
H∈S(Gi)

q(α̂, β̂, γ̂,Xi,H, Yi)η(Xi,H)/
∫
x η(x,H)dF̂ (x)

+λ̂2

∑

H

[
q(α̂, β̂, γ̂,Xk, H, 1)η(Xk, H)∫

x
η(x, H)dF̂ (x)

− η(Xk, H)
∫

x
q(α̂, β̂, γ̂,x, H, 1)η(x, H)dF̂(x)

{
∫

x
η(x, H)dF̂ (x))}2

]}−1

= 1,

and each denominator on the left-hand side should be positive. This equation for λ̂2 has a

unique solution satisfying the above constraints. In addition, we can show that λ̂2/n is bounded

with probability one. Thus, we can choose a further subsequence such that λ̂2/n→ λ∗2.

We construct a discrete distribution function F̃ such that F̃ → F0 uniformly. The sequence

can be constructed along the lines of Lin and Zeng (2006, §A.4.6). Although F̃ is a distribution

function, it may not satisfy the constraint that

∫

x

∑

H

Pα0,β0
(Y = 1|x, H)Pγ(H)Pζ0,F (x|H)f(x)dx = p1.

Thus, we modify the jump size of F̃ at Xk as [F̃{Xk}+ ξ/n]/(1 + ξ) for some constant ξ such

that ξ satisfies the above constraint. It can be shown that the solution exists and ξ → 0. The

modified distribution function F̃ then satisfies all the constraints. By the Glivenko-Cantelli
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theorem, F̂ is absolutely continuous with respect to F̃ , and dF̂ /dF̃ (x) → q(x) uniformly in

x for some positive function q(·). Since n−1 log{Ln(θ̂, F̂ )/Ln(θ0, F̃ )} ≥ 0, we take limits. We

conclude that the Kullback-Leibler information for (θ∗, F ∗) is non-positive. Hence, Lemma

S.5 entails that θ∗ = θ0 and F ∗ = F0.

We now derive the asymptotic distribution. We obtain score functions by differentiating

logLn(θ, F ) with respect to θ̂ along the direction v and with respect to F̂ along submodels

with tangent direction ψ satisfying all the constraints and with the total variation bounded

by 1. The linearization of the score functions around the true parameter value, together with

the Donsker theorem, yields

n1/2

[
Ω1(v, ψ)T(θ̂ − θ0) +

∫
Ω2(v, ψ)d(F̂ − F0)

]
= n−1/2

n∑

i=1

(
vTlθ + lF [ψ]

)
+ op(1),

where Ω ≡ (Ω1,Ω2) corresponds to the information operator and has the form of the first-order

Fredholm type, and lθ and lF are the score operators for θ and F , respectively. According

to Lemma S.6, Ω is invertible. Thus, the weak convergence follows from Theorem 3.3.1 of

van der Vaart and Wellner (1996). In addition, θ̂ is an asymptotically linear estimator for θ0

with the influence function in the score space, so it follows from Proposition 3.3.1 of Bickel

et al. (1993) that the limiting covariance matrix of n1/2(θ̂ − θ0) attains the semiparametric

efficiency bound.

1.4 Cohort studies

We impose the following conditions:

CONDITION S.6 There exists a positive constant δ0 such that Pr(C ≥ τ |X, G) = Pr(C =

τ |X, G) ≥ δ0 almost surely, where τ corresponds to the end of the study.

CONDITION S.7 The true value Λ0(t) of Λ(t) is a strictly increasing function in [0, τ ] and is

continuously differentiable. In addition, Λ0(0) = 0 and Λ′0(0) > 0.

LEMMA S.7 If two sets of parameters (θ, F,Λ) and (θ̃, F̃ , Λ̃) yield the same joint distribution,

then θ = θ̃, F = F̃ and Λ = Λ̃.
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Proof: Suppose that

∑

H∈S(G)

[
Λ′(Ỹ )eβ

TZ(X,H)Q′(Λ(Ỹ )eβ
TZ(X,H))

]∆

exp
{
−Q(Λ(Ỹ )eβ

TZ(X,H))
}
Pζ,F (X|H)Pγ(H)

=
∑

H∈S(G)

[
Λ̃′(Ỹ )e

eβTZ(X,H)Q′(Λ̃(Ỹ )e
eβTZ(X,H))

]∆

exp
{
−Q(Λ̃(Ỹ )e

eβTZ(X,H))
}
Peζ, eF (X|H)Peγ(H).

We choose ∆ = 1 and integrate Ỹ from 0 to y on both sides to obtain the equation

∑

H∈S(G)

[
1− exp{−Q(Λ(y)eβ

TZ(X,H))}
]
Pζ,F (X|H)Pγ(H)

=
∑

H∈S(G)

[
1− exp{−Q(Λ̃(y)e

eβTZ(X,H))}
]
Peζ, eF (X|H)Peγ(H). (S.9)

We obtain a second equation by setting ∆ = 0 and Ỹ = y. The summation of the two

equations yields
∑

H∈S(G)

Pζ,F (X|H)Pγ(H) =
∑

H∈S(G)

Peζ, eF (X|H)Peγ(H).

By the arguments in the proof of Lemma S.1, γ = γ̃, f = f̃ and ζ = ζ̃. By letting G = 2h or

G = h + h̃ in (S.9), we have Λ(y)eβ
TZ(X,H) = Λ̃(y)e

eβTZ(X,H), which entails Λ = Λ̃ and β = β̃

under Condition S.4.

LEMMA S.8 If there exist a vector µθ ≡ (µT
β ,µ

T
γ ,µ

T
ζ )T and functions ψ(x) and φ(t) with

E[ψ(X)] = E[φ(Y )] = 0 such that

µT
θ lθ(θ0, F0,Λ0) + lF (θ0, F0,Λ0)[

∫
ψ dF0] + lΛ(θ0, F0,Λ0)[

∫
φ dΛ0] = 0,

where lθ is the score function for θ, lF [
∫
ψ dF0] is the score function for F along the sub-model

F0 + ε
∫
ψ dF0, and lΛ[

∫
φ dΛ0] is the score function for Λ along the sub-model Λ0 + ε

∫
φ dΛ0,

then µθ = 0, ψ = 0 and φ = 0.

Proof: We wish to show that if there exist a vector µθ ≡ (µT
β ,µ

T
γ ,µ

T
ζ )T and functions ψ(x)

and φ(t) with E[ψ(X)] = E[φ(Y )] = 0 such that

µT
θ lθ(θ0, F0,Λ0) + lF (θ0, F0,Λ0)[

∫
ψ dF0] + lΛ(θ0, F0,Λ0)[

∫
φ dΛ0] = 0, (S.10)
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where lθ is the score function for θ, lF [
∫
ψ dF0] is the score function for F along the sub-model

F0 + ε
∫
ψ dF0, and lΛ[

∫
φ dΛ0] is the score function for Λ along the sub-model Λ0 + ε

∫
φ dΛ0,

then µθ = 0, ψ = 0 and φ = 0. With ∆ = 1, (S.10) becomes

∑

H∈S(G)

Λ′0(Ỹ )eβ
T
0 ZQ′(Λ0(Ỹ )eβ

T
0 Z) exp

{
−Q(Λ0(Ỹ )eβ

T
0 Z)
}
Pγ0

(H)
exp{ζT

0D(X, H)}f0(X)∫
x

exp{ζT
0D(x, H)}dF0(x)

×
{
µT
βZ +

[
Q′′(Λ0(Ỹ )eβ

T
0 Z)−

(
Q′(Λ0(Ỹ )eβ

T
0 Z)
)2
]
Λ0(Ỹ )eβ

T
0 ZµT

βZ
Q′(Λ0(Ỹ )eβ

T
0 Z)

+φ(Ỹ ) +

[
Q′′(Λ0(Ỹ )eβ

T
0 Z)−

(
Q′(Λ0(Ỹ )eβ

T
0 Z)
)2
] ∫ eY

0
φ(t)dΛ0(t)eβ

T
0 Z

Q′(Λ0(Ỹ )eβ
T
0 Z)

+ µT
γ∇γ logPγ0

(H)

+µT
ζD(X, H)−

µT
ζ

∫
x

exp{ζT
0D(x, H)}D(x, H)dF0(x)∫

x
exp{ζT

0D(x, H)}dF0(x)

+ψ(X)−
∫

x
exp{ζT

0D(x, H)}ψ(x)dF0(x)∫
x

exp{ζT
0D(x, H)}dF0(x)

}
= 0. (S.11)

In the above equation, we integrate Ỹ from 0 to τ . We also let ∆ = 0 and Ỹ = τ in (S.10).

The summation of these two equations with G = 2h or G = h + h† yields

µT
γ∇γ logPγ0

(H) + µT
ζD(X, H)−

µT
ζ

∫
x

exp{ζT
0D(x, H)}D(x, H)dF0(x)∫

x
exp{ζT

0D(x, H)}dF0(x)

+ ψ(X)−
∫

x
exp{ζT

0D(x, H)}ψ(x)dF0(x)∫
x

exp{ζT
0D(x, H)}dF0(x)

= 0.

It follows from the arguments in the proof of Lemma S.2 that µγ = 0, µζ = 0, and ψ = 0.

By letting G = 2h or G = h + h† and Y = 0 in (S.11), we obtain µT
βZ(X, H) + φ(0) = 0. It

then follows from Condition S.4 that µβ = 0 and φ(0) = 0. Thus, (S.11) reduces to

φ(Ỹ ) +

[
Q′′(Λ0(Ỹ )eβ

T
0 Z)−

(
Q′(Λ0(Ỹ )eβ

T
0 Z)
)2
] ∫ eY

0
φ(t)dΛ0(t)eβ

T
0 Z

Q′(Λ0(Ỹ )eβ
T
0 Z)

= 0

for H = (h, h). Since Q is strictly increasing, we conclude that φ(y) = 0 for any y.

THEOREM S.4 Under the conditions of Theorem S.3 and Conditions S.6-S.7, |θ̂ − θ0| +

supx |F̂ (x)−F0(x)|+supt∈[0,τ ] |Λ̂(t)−Λ0(t)| → 0 almost surely. In addition, n1/2(θ̂−θ0, Λ̂−Λ0)
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converges weakly to a zero-mean Gaussian process in Rd× l∞([0, τ ]), where d is the dimension

of θ0, and l∞([0, τ ]) is the space of all bounded functions on [0, τ ] equipped with the supremum

norm. Furthermore, the limiting covariance matrix of θ̂ attains the semiparametric efficiency

bound.

Proof: First, we show that Λ̂ is uniformly bounded in [0, τ ] as n→∞. Note that Λ̂ maximizes

L̃n(Λ) ≡ Ln(θ̂,Λ, F̂ )/
∏n

i=1 F̂{Xi}. Clearly,

L̃n(Λ) ≤ c0

n∏

i=1

∑

H∈S(Gi)

{
Λ′(Ỹi)e

βTZ(Xi,H)Q′
(
−Λ(Ỹi)e

βTZ(Xi,Hi)
)}∆i

exp
{
−Q
(
Λ(Ỹi)e

βTZ(Xi,Hi)
)}

for some constant c0. According to the conditions of this theorem and Appendix B of Zeng

and Lin (2007), L̃n(Λ) ≤ c1

∏n
i=1

[
Λ′(Ỹi)∆i(1 + Λ(Ỹi))

−(∆i+δ0)
]

for some positive constants c1

and δ0. By the partitioning arguments in the proof of Theorem 1 of Zeng and Lin (2007), we

can show that if Λ̂(τ) is unbounded, then the difference between Ln(θ̂, Λ̂, F̂ ) and Ln(θ0, Λ̃, F̂ ),

where Λ̃ is a step function converging to Λ0, diverges to −∞. Thus, Λ̂(τ) must be bounded

with probability one.

Using the above result and the arguments in the proof of Theorem S.3, we choose a

uniformly convergent subsequence from any subsequence of (θ̂, Λ̂, F̂ ). By the Glivenko-Cantelli

theorem and the property of the Kullback-Leibler information, the limit of the convergent

subsequence must be the true parameters (θ0,Λ0, F0). The asymptotic distribution of θ̂, Λ̂

and F̂ follows from the arguments used in the proof of Theorem S.3.

13



2. NUMERICAL ALGORITHMS

In this section, we present the EM algorithms (treating H as missing data) for all the designs

considered in this paper.

2.1 Cross-sectional studies

Suppose that there are J distinct values of X, denoted by x1, . . . ,xJ . Let F{xj} be the

jump size of F at xj. To incorporate the restriction that
∑

j F{xj} = 1, we estimate

log(F{xj}/F{xJ}) (j = 1, . . . , J−1) instead. Define Djkl = D(xj, hk, hl), Zjkl = Z(xj, hk, hl),

Wkl =




I(hk = h1) + I(hl = h1)
...

I(hk = hK−1) + I(hl = hK−1)


 ,Mjkl =




Djkl
I(j = 1)

...
I(j = J − 1)


 , δ =




ζ
log(F{x1}/F{xJ})

...
log(F{x(J−1)}/F{xJ})


 .

To incorporate the constraint that
∑

k πk = 1, we define νk = log(πk/πK) and ν = (ν1, . . . , νK−1)
T,

so Pγ(H = (hk, hl)) = exp(νTWkl)/
∑

k,l exp(νTWkl). Under X = xj and H = (hk, hl),

exp{ζTD(X, H)}f(X)∫
x

exp{ζTD(x, H)}dF (x)
=

exp(δTMjkl)∑
j′ exp(δTMj′kl)

.

The complete-data log-likelihood is

lcn =
∑

i,j,k,l

I{Xi = xj, Hi = (hk, hl)}
{

logPα,β,ξ(Yi|xj, (hk, hl)) + νTWkl + δTMjkl

− log
∑

j′

exp(δTMj′kl)

}
− n log

∑

k,l

exp(νTWkl).

In the E-step, we evaluate E{I(Xi = xj, Hi = (hk, hl))
∣∣Xi,Yi, Gi}, which can be shown to be

ωijkl ≡
I{Xi = xj , (hk, hl) ∈ S(Gi)}Pα,β,ξ(Yi|xj , (hk, hl))eν

TWkl+δ
TMjkl/

∑
j′ e

δTMj′kl

∑
(hk′ ,hl′)∈S(Gi)

Pα,β,ξ(Yi|xj , (hk′ , hl′))eν
TWk′l′+δ

TMjk′l′/
∑

j′ e
δTMj′k′l′

.

In the M-step, we maximize lcn with I{Xi = xj, Hi = (hk, hl)} replaced by ωijkl. The maxi-

mization is carried out by the quasi-Newton algorithm. Starting with α = 0, β = 0, δ = 0

and νk = log(π̃k/π̃K) (k = 1, . . . , K − 1), where the π̃k’s are the MLEs of the πk’s based on Gi
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(i = 1, . . . , n), we iterate between the E-step and M-step until the change in the observed-data

log-likelihood is negligible.

We can estimate the limiting covariance matrix of θ̂ and F̂ by inverting the (observed-

data) information matrix for all the parameters including the jump sizes of F̂ . The information

matrix is obtained via the Louis (1982) formula. We can also estimate the limiting covariance

matrix of θ̂ by using the profile likelihood function pln(θ) ≡ maxF logLn(θ, F ). Particularly,

the (s, t)th element of the inverse covariance matrix of θ̂ can be estimated by −ε−2
n

{
pln(θ̂ +

εnes+ εnet)−pln(θ̂+ εnes)−pln(θ̂+ εnet)+pln(θ̂)
}

, where εn is a constant of order n−1/2, and

es, and et are the sth and tth canonical vectors. We calculate pln(θ) via the EM algorithm

by holding θ constant in both the E-step and M-step.

2.2 Case-control studies with rare disease

We adopt the notation of Section 2.1. The E-step of the EM algorithm is the same as in

Section 2.1. In the M-step, the objective function to be maximized is

l̃n(β,ν, δ) =
∑

i,j,k,l

ωijkl

{
Yiβ

TZjkl + νTWkl + δTMjkl − log
(∑

j′

eδ
TMj′kl

)}

− n1 log

{∑

j,k,l

eβ
TZjkl+νTWkl

eδ
TMjkl

∑
j′ e

δTMj′kl

}
− n0 log

{∑

k,l

eν
TWkl

}
,

where ωijkl is defined in Section 2.1. We use the Louis formula to calculate the observed-data

information matrix, whose inverse is used to estimate the covariance matrix of the NPMLEs;

the profile likelihood method can also be used to estimate the covariance matrix of θ̂.

2.3 Case-control studies with known disease rate

The E-step is similar to that of Section 2.1. In the M-step, we use the Lagrange multiplier λ

for the constraint

∑

j,k,l

Pα,β(Y = 1|xj, hk, hl)
exp(νTWkl + δTMjkl)∑

j′ exp(δTMj′kl)
= p1

∑

k,l

exp(νTWkl). (S.12)
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The objective function to be maximized in the M-step is

l̃n(α,β,ν, δ, λ) =
∑

i,j,k,l

ωijkl

{
logPα,β(Yi|xj , hk, hl) + νTWkl + δTMjkl − log

(∑

j′
eδ

TMj′kl
)}

−λ
{∑

j,k,l

Pα,β(Y = 1|xj, hk, hl)eν
TWkl+δ

TMjkl/
∑

j′

eδ
TMj′kl − p1

∑

k,l

eν
TWkl

}

−n log

{∑

k,l

eν
TWkl

}
. (S.13)

We can treat λ as a free parameter in (S.13), so that (S.12) is automatically met by setting

the derivative with respect to λ to zero. The maximization can be carried out by the quasi-

Newton method. The variances and covariances can be estimated by the inverse information

matrix or by the profile-likelihood method.

2.4 Cohort studies

We present the EM algorithm for the proportional hazards model. Suppose that there are L

distinct failure times t1, . . . , tL. Let Λ{tl} denote the jump size of Λ at tl, and dl the number

of failures at tl. In the E-step, we evaluate the conditional expectations

ωijkl ≡E{I(Xi = xj, Hi = (hk, hl))
∣∣Ỹi,∆i,Xi, Gi}

=
I(Xi = xj, (hk, hl) ∈ S(Gi))Rijkl(β,ν, δ)/

∑
j′ exp(δTMj′kl)∑

(hk′ ,hl′)∈S(Gi)
Rijk′l′(β,ν, δ)/

∑
j′ exp(δTMj′k′l′)

,

where Rijkl(β,ν, δ) = exp(∆iβ
TZjkl + νTWkl + δTMjkl − eβ

TZjkl∑
m:tm≤eYi Λ{tm}). In the

M-step, we maximize

l̃n(β,ν, δ,Λ) =
∑

i,j,k,l

ωijkl∆i log Λ{Ỹi}+
∑

i,j,k,l

ωijkl

(
∆iβ

TZjkl + νTWkl + δTMjkl

− log

{∑

j′

exp(δTMj′kl)

}
− eβTZjkl

∑

m:tm≤eYi

Λ{tm}
)
− n log

{∑

k,l

exp(νTWkl)
}
.

The estimate for Λ{tm} is given explicitly by dm
/∑

i:eYi≥tm
∑

j,k,l ωijkle
βTZjkl , and the estimate

for β solves the equation

∑

i,j,k,l

ωijkl∆iZjkl −
L∑

m=1

dm

∑
i:eYi≥tm

∑
j,k,l ωijklZjkleβ

TZjkl
∑

i:eYi≥tm
∑

j,k,l ωijkle
βTZjkl

= 0.
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The remaining parameters can be estimated by maximizing

∑

i,j,k,l

ωijkl

[
νTWkl + δTMjkl − log

{∑

j′

exp(δTMj′kl)

}]
− n log

{∑

k,l

exp(νTWkl)
}
.

We can estimate the asymptotic variances and covariances by the inverse information matrix

or the profile-likelihood method. For other transformation models, we may use the Laplace

transformation to convert the estimation problem into that of the proportional hazards model

with a random effect; see Zeng and Lin (2007).
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3. NUMERICAL RESULTS

We conducted simulation studies in the set-up of Chen et al. (2009). Specifically, we generated

haplotypes under HWE from the distribution given in Table 1 of Chen et al. (2009) and

generated a binary environmental covariate X with Pr(X = 1) = 0.3, ζ1,3 = 0 or −.4 and

ζ1,j = 0 (j 6= 3). Given H and X, the disease status was generated from model (13) of Chen

et al. (2009).

For each simulated data set, we calculated the proposed estimator of β allowing for gene-

environment dependence and the Lin-Zeng estimator assuming gene-environment indepen-

dence, denoted as β̂dep and β̂ind, respectively. Given these two estimators, we constructed

two empirical Bayes estimators using formula (7) of Chen et al. (2009). Specifically, the

multivariate shrinkage estimator of β is

β̂EB1 = β̂dep + K(β̂ind − β̂dep),

where K = V
[
V + (β̂ind − β̂dep)(β̂ind − β̂dep)T

]−1
, and V is the estimated covariance matrix

of (β̂ind − β̂dep); the component-wise shrinkage estimator of the jth component of β is

β̂EB2,j = β̂dep,j + kj(β̂ind,j − β̂dep,j),

where β̂ind,j and β̂dep,j are the jth components of β̂ind and β̂dep, kj = vj/
[
vj+(β̂ind,j− β̂dep,j)

2
]
,

and vj is the jth diagonal element of V.

Write θ = (βT,χT)T, where χ denotes all nuisance parameters (including finite-dimensional

nuisance parameters and jump sizes of nuisance functions). Also, let θ∗ind and θ∗dep be the prob-

ability limits of θ̂ind and θ̂dep. We note the following representations

β̂ind − β∗ind =
(
Ip 0

)
I−1

ind(θ∗ind)

n∑

i=1

Uind,i(θ
∗
ind) + op(n

−1/2),

and

β̂dep − β∗dep =
(
Ip 0

)
I−1

dep(θ∗dep)

n∑

i=1

Udep,i(θ
∗
dep) + op(n

−1/2),
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where Uind,i(θ) and Udep,i(θ) are the ith subject’s contributions to the score functions of θ under

the Lin-Zeng and proposed methods, respectively, Iind(θ) and Idep(θ) are the corresponding

information matrices, Ip is the p×p identity matrix, and 0 is the p×q zero matrix, with p and

q being the dimensions of β and χ, respectively. Thus, we estimate the covariance matrices

for β̂ind and β̂dep as follows:

v̂ar(β̂ind) ≡
(
Ip 0

)
I−1

ind(θ̂ind)
{ n∑

i=1

Uind,i(θ̂ind)UT
ind,i(θ̂ind)

}
I−1

ind(θ̂ind)
(
Ip 0

)T
,

v̂ar(β̂dep) ≡
(
Ip 0

)
I−1

dep(θ̂dep)
{ n∑

i=1

Udep,i(θ̂dep)UT
dep,i(θ̂dep)

}
I−1

dep(θ̂dep)
(
Ip 0

)T
,

ĉov(β̂ind, β̂dep) ≡
(
Ip 0

)
I−1

ind(θ̂ind)
{ n∑

i=1

Uind,i(θ̂ind)UT
dep,i(θ̂dep)

}
I−1

dep(θ̂dep)
(
Ip 0

)T
.

The simulation results for the dominant and recessive models are presented in Table S.1, in

the same format as Tables 2 and 3 of Chen et al. (2009). Our results for the Lin-Zeng estimator

(i.e., β̂ind) are similar to those of Chen et al.’s (2009) model-based estimator, especially under

the recessive model. Under the dominant model, the proposed estimator (i.e., β̂dep) tends to be

more efficient than Chen et al.’s (2009) model-free estimator, particularly in estimating gene-

environment interactions. The efficiency gain is much more substantial under the recessive

model, for both main effects and interactions. Consequently, our empirical Bayes estimators

are more efficient than Chen et al.’s, especially under the recessive model.
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Table S.1. Simulation results for the empirical Bayes estimators under dominant and

recessive models

n1 = n0 = 150 n1 = n0 = 300 n1 = n0 = 600
MSE(Bias) MSE(Bias) MSE(Bias)

Dominant Model H H ×X H H ×X H H ×X
ζ1,3 = 0 β̂dep .109(-.016) .292(.024) .054(-.008) .141(.003) .025(-.006) .069(-.007)

β̂ind .097(-.001) .203(-.002) .049(.004) .095(-.022) .023(.004) .047(-.031)

β̂EB1 .106(-.018) .274(.024) .054(-.007) .137(.001) .025(-.005) .067(-.008)

β̂EB2 .101(-.013) .234(.016) .052(-.003) .118(-.007) .024(-.002) .059(-.016)

ζ1,3 = −.4 β̂dep .111(-.008) .310(.044) .051(-.005) .156(.005) .026(-.005) .074(-.013)

β̂ind .120(.133) .375(-.398) .062(.128) .275(-.416) .038(.122) .225(-.418)

β̂EB1 .107(-.004) .293(.026) .051(-.001) .155(-.008) .026(-.002) .074(-.022)

β̂EB2 .107(.028) .290(-.072) .051(.021) .163(-.079) .026(.012) .081(-.065)

Recessive Model

ζ1,3 = 0 β̂dep .099(-.048) .261(-.049) .049(-.027) .127(-.031) .029(-.023) .073(-.023)

β̂ind .095(-.057) .197(-.043) .047(-.030) .092(-.034) .026(-.023) .052(-.031)

β̂EB1 .097(-.050) .239(-.046) .049(-.028) .115(-.030) .028(-.023) .066(-.024)

β̂EB2 .096(-.054) .225(-.047) .048(-.030) .108(-.031) .027(-.024) .062(-.026)

ζ1,3 = −.4 β̂dep .087(-.050) .339(-.065) .044(-.026) .173(-.031) .026(-.022) .088(-.032)

β̂ind .095(.117) .778(-.720) .065(.147) .621(-.699) .047(.149) .536(-.678)

β̂EB1 .087(-.039) .352(-.107) .044(-.020) .177(-.053) .026(-.018) .090(-.044)

β̂EB2 .087(-.029) .370(-.170) .044(-.015) .185(-.080) .026(-.015) .094(-.069)

NOTE: β̂dep and β̂ind pertain to the proposed estimator allowing for gene-environment depen-

dence and the Lin-Zeng estimator assuming gene-environment independence, respectively. H

and H×X stand for main haplotype effect and haplotype-environment interaction. MSE and

Bias are the mean square error and bias of the parameter estimator. Each entry is based on

1,000 replicates.
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