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1 Design matrices for various parameterizations

We parameterize the cluster mean µkl = Wβkl, where βkl = (αk1, αk2, αk3, γkl1, γkl2, γkl3).
The three parameterizations discussed in section 2 of the paper are shown here:

WI =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1



WII =



1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 0 0 1 0 0
1 1 0 1 1 0
1 1 1 1 1 1
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WIII =



1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 0 0 1 0 0
1 0 0 1 1 0
1 0 0 1 1 1



2 Details of the MIXL algorithm

2.1 The PEM algorithm.

1. M-step-Aggregate. Compute gene specific membership for level 1 by aggregating
η̂gkl.

τ̂gk =
Lk∑
l=1

η̂gkl.

2. M-step-Profile-1. This step concerns the profiling of the multivariate normal density
for xg.

(a) Consider the part of the expected complete data likelihood that involves the
marginal distribution of xg. We have

G∑
g=1

K∑
k=1

Lk∑
l=1

(
−1

2
η̂gkl(xg −WKαk)

′Σ−1
k (xg −WKαk)−

1

2
η̂gkl log |ΣX

k |
)

= (1)

G∑
g=1

K∑
k=1

(
−1

2
τ̂gk(xg −WKαk)

′Σ−1
k (xg −WKαk)−

1

2
τ̂gk log |ΣX

k |
)

,

where WK is the upper left diagonal block of design matrix W (corresponding to
the 1st level data).

(b) Given µk, we profile with respect to ΣX
k and get

ΣX(r)

k =

∑G
g=1 τ̂gk(xg − µ

(r)
k )(xg − µ

(r)
k )′∑G

g=1 τ̂gk

,

where r refers to the r-th iteration of the EM steps. A regularized version of ΣX
k

is obtained as

Σ̃X(r)

k =
∆X

p (ν) + ΣX(r)

k nk

ν + nk

,

where nk =
∑G

g=1 τ̂gk, and ∆X
p =

∑G

g=1
(xg−x̄g)(xg−x̄g))′

GK2/T . The choice of scale parame-
ter, ν, is discussed in section 2.3 (see also Fraley and Raftery (2004)).

(c) Holding ΣX
k fixed, the maximizer over αk can be obtained by first performing a

weighted least squares fit of the form

xg = WKαgk + ε, where cov(ε) = ΣX
k ,

2



and then taking a weighted average of the estimates of αgk as

α
(r)
k ≡ α̂k =

∑G
g=1 τ̂gkα̂gk∑G

g=1 τ̂gk

.

Finally, we update µk as µ
(r)
k = WKα̂k.

3. M-step-Profile-2. Next, we consider profiling the conditional distribution of yg given
xg. The expected complete data likelihood that involves the conditional distribution
of yg given xg is given by

G∑
g=1

K∑
k=1

Lk∑
l=1

(
−1

2
ηgkl(yg − µ

Y |X
kl )′Σ

Y |X
kl

−1
(yg − µ

Y |X
kl )− 1

2
ηgkl log |ΣY |X

k |
)

,

where

µ
Y |X
kl = ΣXY

kl (ΣX
k )−1(xg − µk),

Σ
Y |X
kl = ΣY

kl −ΣY X
kl (ΣX

k )−1ΣXY
kl .

(a) The second profiling step starts with updating ΣY X
kl and ΣY

kl as follows.

ΣY X(r)

kl =

∑G
g= η̂gkl(yg − µY (r)

kl )(xg − µX(r)

k )′∑G
g=1 η̂gkl

,

ΣY (r)

kl =

∑G
g= η̂gkl(yg − µY (r)

kl )(yg − µY (r)

kl )′∑G
g=1 η̂gkl

.

The regularized versions of these covariance estimates are

Σ̃Y X(r)

kl =
∆Y X

p (ν) + ΣY X(r)

kl nkl

ν + nkl

,

Σ̃Y (r)

kl =
∆Y

p (ν) + ΣY (r)

kl nkl

ν + nkl

,

where

∆Y
p =

∑G
i=1(yg − ȳ)(yg − ȳ)

′∑K
k=1 Lk

2/d
,

∆Y X
p =

∑G
i=1(yg − ȳ)(xg − x̄)

′∑K
k=1 Lk

2/d
.

Then, the conditional mean of yg and the covariance matrix are updated as fol-
lows:

µ
Y |X(r)

kl = ΣXY (r)

kl (ΣX(r)

k )−1(xg − µ
(r)
k ),

Σ
Y |X(r)

kl = ΣY (r)

kl −ΣY X(r)

kl (ΣX(r)

k )−1ΣXY (r)

kl .

(b) Similar to the M-step-Profile-1 step above, for fixed Σ
Y |X
kl , we have a weighted

least squares formulation given by

y∗
g = WLγgkl + ε, cov(ε) = Σ

Y |X
kl ,

where y∗
g = yg−µ

Y |X(r)

kl −WLKα̂
(r)
k and WL represents the lower diagonal block of
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the W matrix corresponding to L-level parameters whereas WLK represents the
lower off-diagonal block of the W matrix.

We obtain

γ̂kl =

∑G
g=1 η̂gklγ̂gkl∑G

g=1 η̂gkl

,

and set β̂kl = (α̂k, γ̂kl), and µ
(r)
kl = Wβ̂kl.

2.2 Model selection

2.2.1 Cluster parameterizations and subset selection

Let us first consider the case with K and LK = {Lk, k = 1, · · · , K} fixed. We want to select
the sparsest representation of each cluster mean. This will enable us to better interpret the
meaning of each cluster. For example, is a particular cluster model representing (i) a static
cell-line difference, or (ii) a dynamic one, and if so for which time-points do the cell-lines
really differ?

Recently, several papers have appeared on the topic of variable selection for model based
clustering. These papers focus on the selection of a subset of variables, or dimensions of
the feature vector, that can discriminate between cluster components (e.g., Friedman and
Meulman (2002), Law et al. (2004), Raftery and Dean (2006), Hoff (2006), Tadesse et al.
(2005)).

Raftery et al. (Raftery and Dean; 2006) proposed an iterative algorithm, considering dele-
tions or additions to the set of discriminative variables. Consider the addition of a set of
variables. The two models that are compared are; (1) a cluster mixture model for the new
set of variables (original set and the set under consideration), and a cluster independent
model of the excluded variables, and (2) a cluster model for the original set, with a cluster
independent model for the set under consideration and the excluded variables. The decision
to accept a new set of variables is made using Bayes factors.

Hoff (Hoff; 2006) models the cluster means with cluster specific contrasts. Let us consider a
d-dimensional data set with global mean u (d-dimensional) and covariance Σ. At the cluster
level, we define parameters uk = µ + δk, where δk represents a set of contrasts between
the global mean and the cluster mean. Hoff considers the case where only a subset of the
d-dimensional vector δk are non-zero, and that this subset may vary across clusters. The
model is fit via a hierarchical Bayesian scheme with priors on the cluster specific subsets of
non-zero contrasts.

In our parametrization of the cluster means, as outlined in the section below, we deviate from
the above approaches. Our parametrization, and the corresponding sparsest representation
we select, allows for cluster specific descriptions of contrasts between variables within a
cluster, as well as between clusters. We model all dimensions within the clustering model.
However, for each cluster we allow for only a subset of parameters to be non-zero. The
subset of coefficients that are set to zero do not necessarily correspond to a dimension that
is irrelevant for clustering.
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How do we then perform subset selection within each cluster model? Clearly, a full combina-
torial search of all possible subsets is not feasible. For each combination of subset models, the
EM algorithm has to be re-run to adapt to the reduced complexity of some of the clusters.
Object posterior probabilities are affected by the cluster specific models.

We take a backward selection approach to selecting the optimal subset models. We begin
with the full model for each cluster {k, l}. We then visit each cluster, one at a time, and
threshold the posterior probabilities ηgkl to obtain a cluster specific data set of size nkl (or nk

for a 1st level cluster k). We perform backward selection at a 1st level cluster k using only the
1st level data. We formulate the model selection as a generalized linear regression problem,
where xg = WKαk + ε, ε ∼ N(0, ΣX

K). We hold ΣK fixed during the model selection, and
the estimated covariance matrix is used in the weighted least squares fit. We use the local
BIC to select the optimal cluster specific model. After backward selection we thus obtain
a sparse solution α∗

k for each internal node. We then re-run the EM steps with the sparse
restrictions on β (i.e. using a subset of the columns of matrices WK for each cluster k). Thus
we obtain an updated allocation between all {k, l} clusters given the selected subset model
class.

To perform model selection at the {k, l} 2nd level clusters we use the profile likelihood, as
was done in the corresponding M-step of the fitting algorithm. For each cluster {k, l} we

compute the conditional mean µl(k) and covariance Σ
Y |X
k,l . We can write the profile likelihood

in terms of the 2nd level specific parameters only (γkl). We perform backward selection in

a generalized linear regression problem; y∗g = WLγkl + εL, εL ∼ N(0, Σ
Y |X
k,l ). y∗g is defined in

supplementary section 2.1, PEM step 3(b). We obtain the optimal sparse solution γ∗
kl. We

then re-run the EM steps with the sparse restrictions on γkl (a subset of columns of WL for
each sub-cluster l(k)). We thus obtain an updated allocation among all clusters.

Finally, to reduce the impact of such a greedy and directed search, we re-run the whole
selection strategy from the most recent allocation, starting yet again from the full model and
searching backwards. In practice, we found that iterations of the subset selection algorithm
rarely produced a different final result.

We outline the subset selection algorithm here:

I Initialize with the full model at each node z, where z is one from the set of internal
(k = 1, · · · , K) or leaf-nodes ({k, l}, k = 1, · · · , K, l = 1, · · · , Lk).
Set the current design matrix of each node z to the full W ; WK(k) for the internal
nodes, WL(k, l) for the leaf-nodes.
(The number of columns of a design matrix, col(W (z)), corresponds to the number
of non-zero parameters at node z.)
Run the EM-algorithm.

II (a) Visit each internal node k, and perform a hard threshold operation on τgk to
obtain the node specific data.
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(b) If W (k) is empty, go to the next node k.
Otherwise, perform backward selection for the weighted least squares fit at node
k. Obtain the sparse solution α∗

k via the local BIC, and update the current design
matrix at node k to WK(k) = W ∗

K(k) (i.e. drop the columns that correspond to
α∗

k = 0).

(c) Re-run the EM algorithm with the updated WK(k) constraints.

III (a) Visit each leaf node {k, l}, and perform a hard threshold operation on ηgkl to
obtain the node specific data.

(b) If WL(l(k)) is empty, go to the next node {k, l}.
Otherwise, perform backward selection for the weighted least squares fit at node
{k, l} using the profile likelihood. Obtain the sparse solution γ∗

kl via the lo-
cal BIC, and update the current design matrix at node {k, l} to WL(l(k)) =
W ∗

L(l(k)) (i.e. drop the columns that correspond to γ∗
kl = 0).

(c) Re-run the EM algorithm with the WK(k) and updated WL(l(k)) constraints.

IV Go to I and iterate until convergence.

2.2.2 Selecting the number of clusters.

The selection of the number of clusters is usually approached as a complexity allocation
problem using criteria such as BIC, CIC or MDL (e.g. Fraley and Raftery (2002), Raftery
and Dean (2006)). Recently, Zhu and Zhang (2004) developed a general statistical hypothesis
testing formulation to select the number of clusters. Here we take the complexity allocation
route, using BIC to select the number of clusters. Let us consider a multi-level parametriza-
tion where the dimensionality of the data vectors at the 1st level is Dim(1), and at the
2nd level Dim(2). We denote the model coefficients at the 1st level by αk, k = {1, · · · , K},
and the model coefficients at the 2nd level by γkl, l = {1, · · · , Lk} for all k = {1, · · · , K}.
In the previous section we considered subset model selection for each node {k, l} of the
multi-level clustering. Thus, the number of non-zero coefficients αk 6= 0 may be less than
Dim(1), and similarly for γkl. We denote the number of non-zero coefficients at each node
{k, l} by (dim(αk), dim(γkl)) respectively. We gather all parameters of a multi-level fit into
a set Θ(K,LK) = {πkl, αk, γkl, Σkl,∀k = {1, · · · , K}, l = {1, · · · , Lk}}. Then the total model
complexity is given by

p(Θ(K,LK)) =

 K∑
k=1

dim(αk) +
Lk∑
l=1

dim(γkl)


(1)

+

+

[
KDim(1)(Dim(1)− 1)

2

]
(2)

+

[
(

K∑
k=1

Lk)− 1

]
(3)

6



[(
K∑

k=1

Lk

)(
Dim(1)Dim(2) +

Diml(2)(Dim(2)− 1)

2

)]
(4)

,

where term (1) is the number of mean parameters estimated at the 1st and 2nd levels, term
(2) is the 1st-level covariance estimates, term (4) is the 2nd-level covariance estimates and
cross-covariance estimates between the 1st and 2nd levels, and term (3) is the number of
estimated cluster proportions. For each given K and LK we can compute the log-likelihood:

l(Θ(K,LK)) =
G∑

g=1

log

 K∑
k=1

Lk∑
l=1

πklφ((xg,yg); Wβkl, Σkl)

 .

We then compute the BIC value as

BIC(K,LK) = −2l(Θ(K,LK)) + p(Θ(K,LK)) log(G).

We explored several different search strategies for identifying the optimal multi-level model.
The best performance was obtained using a backward search. In the flow-chart below, M
refers to the total number of clusters (M =

∑
k Lk).

I Initialize with the null model M = 1, L1 = 0 and set the BIC to an arbitrarily large
value.

II Set M = M + 1.

(a) Outer loop

• Set K = M and LK = {Lk = 1,∀k = {1, · · · , M}}.
Run the EM algorithm.
Record the corresponding BIC value: BIC(new).
Go to Inner Loop II-b.

(b) Inner Loop

• Set K = K - 1
For b = {1, · · · , B}
– group the M 1st level parameters from the single-level clustering (II-

a): (µk, Σk) into K groups. The corresponding grouping defines the set
Lb

K(new) = {Lb
k, k = 1, · · · , K}.

– run the EM algorithm for K and Lb
K(new) and record BICb(K).

• Set b∗ = argminbBICb(K), and set BIC(K) = BICb∗(K). Retain the
best multi-level clustering with K 1st level clusters and the corresponding
grouping LK(new) = Lb∗

K(new).

(c) • If BIC(K) ≥ BIC(new) go to step III (the optimal number of sub-clusters
has been exceeded).

• If BIC(K) < BIC(new), accept the best multi-level model model K and
the corresponding set LK = LK(new), BIC(new) = BIC(K).

7



Go to Inner Loop step II-b.

III • If BIC(new) ≥ BIC, STOP (the optimal number of clusters have been ex-
ceeded)

• If BIC(new) < BIC, set BIC = BIC(new) and go to II-a (consider increasing
the total number of clusters).

For both subset selection, and the selection of the number of clusters, we adopt greedy
searches. While it is true that such schemes can converge to local optima, a fully exhaustive
search is computationally prohibitive. A stochastic search may remedy the problem of local
optima. We did not consider stochastic searches here, but do run the full algorithm several
times while initiating from different starting values.

2.3 Computational details

2.3.1 Regularizing the cluster covariance estimates

In Fraley and Raftery (2004), a regularized estimate of the cluster covariances are introduces
as

Σ̃X(r)

k =
∆X

p (νp + d + 2) + ΣX(r)

k nk

νp + d + 2 + nk

.

The motivation for this regularization comes from assuming a conjugate inverse Wishart
prior distribution with scale matrix ∆0 and degrees of freedom νp for ΣX

kl. Here, ∆0 is
estimated by the plug-in estimator

∆X
p =

∑G
i=1(xg − x̄)(xg − x̄)

′

K2/d
,

where x̄ represents the componentwise mean vector over all the G genes. νp is chosen as
max{0, nmin}+ d + 2, where d is the dimension of the data, and nmin can be interpreted as
the number of observations with variance ∆X

p that are added to the clustered data.

The scaled global covariance matrix is not always a good choice to shrink toward. Consider
a clustering in two dimensions, where K clusters means lie on the 45 degree line, and the
cluster covariance are aligned at 135 degrees (i.e. orthogonal to the line connecting the cluster
means). The global covariance will be aligned with the 45 degree line. The weighted average
between the ∆X

p and ΣX
k can thus produce a very different cluster shape, even for moderately

large clusters. To reduce the impact of ”over-regularizing” the covariance estimates we take
a frequentist approach. We numerically test the regularized estimates

ΣX(r)

k =
∆X

p (ν) + ΣX(r)

k nk

ν + nk

.

with ν = 0 for singularity problems. We increase ν gradually until the regularized estimate is
functional. Although this regularization no longer follows the Bayesian framework, we point
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out that the lack-of-fit of the over-regularized estimate can increase the deviance several
orders of magnitude for every fixed number of clusters K, compared with the difference in
deviance between different values of K! Thus, an aggressively regularized covariance estimate
favors a small number of clusters K.

2.3.2 Starting values and running times

Mixture model fitting implemented via the EM algorithm is sensitive with respect to starting
values, and MIXL is no exception. We initialize the single-level fit, with M clusters, using
the k-means clustering algorithm. Each single-level fit is initialized from several k-means
clustering outcomes, and the best fit is reported.

As mentioned above, we explored various multi-level initialization schemes (e.g. forward
search, where a 1st level cluster is split in, and backward search, where a cluster is joined
to form a 1st level cluster. The best results were obtained with a backward search strategy.
We initialize the multi-level fit with a total of M clusters. We run the EM algorithm with
K = M and Lk = 1,∀k = {1, · · · , M}. We then cluster the M cluster means and covariances
into K clusters, using only parameters defined at the 1st level data dimension, Dim(1). This
identifies clusters that can potentially form 1st level clusters, with sub-clusters defined over
Dim(2). The k-means clustering of the mean and covariance parameters from the M single-
level fit identifies sub-cluster constellations LK = {Lk, k = 1, · · · , K}}, where

∑
k Lk = M .

We run the multi-level EM algorithm from this initialization. To avoid convergence to local
optima, we form at least B unique groupings of the M clusters into K 1st level clusters,
and run the multi-level fit from all B initializations. The unique groupings are obtained by
running k-means on the Dim(1) parameter set repeatedly, and through random perturbations
of the cluster allocations. It is absolutely necessary to run the multi-level clustering from
several single-level initializations, and several groupings into K 1st level clusters, since the
best single-level fit is not guaranteed to generate the best multi-level fit. In practice, we found
that B = 10 alternative starting values for the single-level fit, and groupings into multi-level
initializations, were sufficient. Since the above initialization procedure starts running the
multi-level fit with starting values obtained from an unconstrained fit, the first iterations
of the profile EM (for Lk > 1 for any k, or after subset selection) in general decreases the
likelihood. After 1 − 5 iterations, the EM steps reverse direction, and converge toward a
constrained solution. In general, the multi-level fit converged after fewer than 50 iterations,
whereas the EM run after subset selection converged after 25 iterations or less.

On an IBM thinkpad X60s, the run-time for a MIXL fit with K = 7 and M = 9 clusters
total, including B = 10 alternative sub-cluster constellations, and including model selection
of cluster parameters βkl, is 2min 24seconds on average. This is using R version 2.2.1. A full
model search requires a run such as the above to be applied for M = Mmin, · · · , Mmax and
K = M, · · · , 1. We considered Mmin = 3 and Mmax = 15 which allowed for a clear minimum
BIC value to be identified. A complete run of the algorithm (M ∈ [3, 15], K ∈ [M, 1]
with B = 10 alternative 1st level constellations, and including subset model selection for all
clusters) took 1hour 22minutes on average. We ran each complete model search 10 times,
initiating from different starting values. The R code is available from the corresponding
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author upon request.

3 Case study: time course gene expression data of pro-

liferating stem cell lines

3.1 Pre-processing

Regulated mRNAs during differentiation of rat neural stem cells were analyzed using the
ABI1700 microarray platform. This microarray, while technically advanced, suffers from
the difficulty of integrating hybridization results into public databases for systems level
analysis. This is particularly true for the rat array since many of the probes were designed
for transcripts based on predicted human and mouse homologs. We analyzed a subset of
15,111 probes that were annotated with high level of confidence. Data extracted from the
scanned arrays was processed using R/BioConductor scripts provided by Applied Biosystems.
Raw data were quantile normalized (BM. et al. (2003)). The data set consisted of 6 separate
experimental conditions (3 time points for each of two cell-lines), with 3 technical replicates
each. A linear model was fit to the data, estimating both cell line and differentiation effects.
We ranked genes based on the Welch F-statistic, and retained the 780 genes for which the
Benjamini-Hochberg adjusted p-value was below 1%. We chose this conservative significance
threshold to focus on the genes for which we were reasonably confident the differential effects
over time and/or cell-line was real. However, a different testing procedure, e.g. the moderated
F-test (Smyth (2004)), results in a slightly different gene list. With the conservative 1%
threshold, the moderated F-test also selected 708 out of the 780 genes we focus on in the
paper.

3.2 Examining the gene functional annotation of identified clus-
ters

Supplementary Tables 1 to 4 report top 10 significant GO categories for each of the 9 clusters
obtained with MIXL.

Clusters 1 and 2: Cluster 1 corresponds to a set of genes that start out at baseline for both
cell-lines, i.e. there is no pre-programming activity. In the glial like population, the expression
of these genes increase rapidly over the course of the experiment. In supplementary Table
1 (middle) we see that some of these genes are in fact annotated as specific to gliogenesis.
The set of genes in cluster 2 are always overexpressed in the glia population compared with
neurons, and the expression in glia increases over time. Supplementary Table 1 (bottom)
identifies this set of genes as appearing related to astrocyte formation (one type of glia), as
well as transporter activity (of which chloride transport is a glial function).

Clusters 3 and 4: These clusters form a set of sub-clusters with neuron specific differen-
tial expression. To interpret these clusters, we rely on the following fact: it is known (from
staining experiments) that the glial like cultures are heterogeneous. That is, in the cultures
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Figure 1: The 9 clusters generated by the best MIXL fit. The solid lines rep-
resent the cluster means, the dashed lines the mean plus/minus the standard
deviation (point wise). The gray lines are the individual genes allocated to
each cluster.

labeled ”glial like” we see a mixture of glia and neurons. In contrast, the neuron population
is largely homogeneous, and almost all cells in these cultures become neurons.
Cluster 3 represents genes that start off high in neurons, whereas the set of genes in glia
population approach (from below) neuron specific levels of activity. Cluster 3 thus highlights
genes that are believed to be specific to neuron formation. These genes are activated in the
glia culture among cells that converge to neurons (Goff et al. (2006)). Looking in supple-
mentary Table 2, several GO categories that are overrepresented in cluster 3 correspond to
neuron and neurite development, as well as activation of other neuron maturation processes
(e.g. regulated by NFkappa-B). The neuron population has been ’pre-programmed’ to this
cell fate, and these genes are thus highly expressed throughout the experiment for these
cultures.
Cluster 4 represent genes that start off more highly expressed in the neuron population. In
the glial like population we again pick up the gene activity associated with the sub-population
converging to neurons. For these genes, activity is increasing in both populations. The GO
categories associated with this cluster (supplementary Table 2) include growth cone, cy-
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Figure 2: Cluster mean profiles of the best multi-level fit K = 7, M = 9, with
two sets of sub-clusters (parametrization WIII).

toskeleton, and microtubule binding, which are associated with dendrite formation (Charych
et al. (2006)). Dendrites are part of the more complex neuron structure which explains the
later activity of these genes compared with the more basic neuronal developmental processes
identified in cluster 3.

Clusters 5 and 6: Clusters 5 and 6 again correspond to sub-clusters that are specific to
activity in the neuron population. Cluster 5 corresponds to an overall higher activity in
neurons compared with glia, and this activity is decreased in both populations. Cluster 6
corresponds to genes whose activity is always lower in neurons compared with glia, where
again the glial activity is decreasing. In cluster 6, the glial gene expression is converging
toward the neuron expression, suggesting that these genes are (de-)activated in the sub-
population of cells in the glial population that form neurons. Cluster 5 is primarily associated
with acid metabolism, whereas cluster 6 is associated with acid synthesis. Acid metabolism is
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a process by which neurons generate neurotransmitters. Glial cells are believed to synthesize
some acids that assist in neuron development and migration. Therefore, one can largely
associate genes in cluster 5 with neuron specific activity, which explains the under expression
in glia.

Cluster 7, 8 and 9: Cluster 7 corresponds to a more rapid increase in expression in
the neuron population compared with glia (as indicated by the selected cluster model with
no time effect in neurons between t = 1 and t = 3). This cluster is the most sparsely
populated, with a large cluster variance. The GO terms associated with these clusters are
not easy to interpret, with the exception of ”morphogenensis”. Cluster 8 is associated with
expression upregulated in the neuron population compared with the glial population at the
onset. The glial expression is slowly converging toward the neuron population. Many of
the top GO categories associated with cluster 8 are primarily centered on high level neuron
functions (e.g. synaptic transmission). Cluster 9 consists of genes that are upregulated in
neurons compared with glia at all times. The top GO categories in this cluster are linked
to phosphorus binding. Phosphor is an activator of BDNF binding, a primary regulator of
dendritic branching at the cell body (primary branching). If we compare clusters 9 and 4,
we see that primary branching (cluster 9) is activated early in neurons (t = 0) and then
decreasing, whereas genes associated with dendritic formation and higher levels of branching
(cluster 4) is associated with increasing gene expression over the course of the experiment.

3.3 Mining the clustering results

Regulation of gene expression in a condition specific manner heavily relies on the activities of
the transcription factors, i.e., DNA binding proteins, and mainly on their recognition of DNA
in a sequence specific manner. The sites that the transcription factors bind to on DNA are
usually 5-20 base pairs long and are referred to as DNA binding motifs or regulatory motifs.
Identification of these sites is a challenging and not completely solved computational biology
problem. Recently, several methods (Bussemaker et al.; 2001; Keleş et al.; 2002; Conlon et al.;
2003) illustrated that addressing this problem in a feature/variable selection framework is a
powerful way of elucidating experiment/class specific binding sites. In these approaches, the
key idea is to use regulatory motifs as covariates and generally gene expression (expressed
versus not expressed) as an outcome of interest. Then, a linear regression model is typically
built to link the motifs to the outcome. More recently, non-parametric regression approaches
like logic regression (Ruczinski et al.; 2003) and MARS (Friedman; 1991) are also employed
(Keleş et al.; 2004; Das et al.; 2004) instead of linear regression models.

In our analysis, we use the cluster assignment of each gene as a class label and consider all
pairwise comparisons of the clusters in a logistic regression framework. Covariates in these
regression models are based on the transcription factor database TRANSFAC (Wingender;
1994). For each gene, we construct a set of covariates utilizing the position specific probability
matrix (PSPM) representations of the regulatory motifs. This representation corresponds
to a 4 by length of the motif matrix where each (i,j)th entry corresponds to the probability
of observing the ith nucleotide at the jth position of the motif (see Stormo (2000) for a
comprehensive review of binding site representations). In order to construct the covariates,
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we extract first 1000 base pairs upstream of the transcription start site, i.e., regulatory region,
for each gene. Then, these regions are scanned by each of the 795 regulatory motif PSPMs
from TRANSFAC using the PATSER tool (Hertz and Stormo; 1999). As a result, we obtain,
for each subsequence in the upstream sequence, a likelihood ratio score representing the
likelihood of the subsequence under the regulatory motif model as opposed to a background
model that assigns (0.3, 0.2, 0.2, 0.3) probabilities to the nucleotides A, C, G, and T,
respectively.

The score of the best matching subsequence within the regulatory region is used as a co-
variate. Due to the high dimensional covariate space, elaborate variable selection schemes
are required to identify the most relevant features.We utilize the recently developed GLMpath

algorithm of (Park and Hastie; 2006). GLMpath fits L1 regularized generalized linear models
by solving the following minimization problem:

β̂(λ) = argmin{− log L(y; β) + λ||β||1},
where λ is the regularization path and L(y; β) represent the logistic regression likelihood
parameterized by regression coefficients β in our framework. In our application, the regular-
ization parameter is based on 5-fold cross-validation.

The number of discriminating position weight matrices identified for each pairwise com-
parison ranged from 0 to 9. The positions weight matrices identified from each pairwise
comparison is displayed in supplementary Table 5. The empty cells between any pairwise
comparison corresponds to an intercept only logistic regression model selected by GLMpath.
Since TRANSFAC does not span the space of all position weight matrices relevant for rat,
we indeed expect some of the pairwise comparisons not to have any discriminating position
weight matrices. It has been previously noticed that although a linear regression analysis
of gene expression as a function of regulatory sequences can elucidate major regulatory se-
quences affecting gene expression, such an analysis has typically low predictive power (Busse-
maker et al.; 2001; Keleş et al.; 2002). Using a summary measure of gene expression, namely
the clustering results, behaves similarly. Although we consider all pairwise comparisons, our
main interest lies in the comparisons between the second level sub-clusters of the multi-level
fit. As depicted in Figure 2(b) in the paper, sub-clusters 3 and 4 and sub-clusters 5 and 6 are
obtained via a split in the second cell line. Examining the position weight matrices selected
for these comparisons, we note that M00133 matrix which is identified in the comparison of
clusters 3 and 4 corresponds to transcription factor Tst-1. Tst-1 is a member of the POU
domain gene family and is expressed in specific neurons and in myelinating glia in the mam-
malian nervous system. This transcription factor, also called MeF2, has been identified by
our collaborators in an independent biochemistry experiment (Goff et al. (2006)). MeF2 is
believed to be a target of a neurogenesis regulating microRNA, and its association with a
neuron specific expression pattern in our study lends support to this biological hypothesis.
Further study of the identified neuron-specific transcription factors are now underway in
collaboration with Professor R. Hart at Rutgers.

14



3.4 Simulation Results

In supplementary Figure 3, and Table 3 in the paper, we summarize the results from the sim-
ulation study. Supplementary Figure 3 (a) shows that indeed the BIC is always reduced after
model selection, even after the EM steps are rerun with the selected parameter constraints.
Thus, performing subset selection on a cluster by cluster basis, using the local BIC, always
produces a better model in terms of the BIC validation index. In supplementary Figure 3
(b) we depict a histogram of the total number of selection errors (across all clusters) for the
50 simulated data sets. In the case of the single level model (Mod(1)) (top panel), the multi-
level fit (MF) generates fewer selection errors than the single-level fit. This is an intriguing
result, given that the multi-level fit for which these errors are compared is constrained to
only have Lk = 1, i.e. no sub-clusters. The reason for the improved selection performance
is that we visit internal (1st level) clusters, and leaf (2nd level) clusters separately, and are
thus performing subset selection on 2∗ (K = 8) clusters in the multi-level fit, compared with
K = 8 clusters in the single-level fit.

In supplementary Figure 3 (c) and (d) (lower panel), we depict the BIC reduction of the
multi-level fit compared with the single-level fit, before and after the selection of the number
of clusters, as well as after subset selection. In supplementary Figure 3 (c) we illustrate the
results for the Mod(1) (single-level fit is correct). We see that before subset selection, the
single- and multi-level fits perform equally well (no difference in BIC value). After model
selection, due to the increased number of clusters considered separately in the selection pro-
cedure (as stated above), the multi-level fit improves on the single-level fit. In supplementary
Figure 3 (d), we illustrate the results from the Mod(2) simulation (multi-level fit is correct).
Here, the multi-level fit improves on the single-level fit both before and after selection. Oc-
casionally, the multi-level fit will perform worse than the single-level fit. This is a direct
result of the limitations of the simulation study. The multi-level fits require a more careful
exploration across multiple starting values. However, for ease of computation, the single-
and multi-level fits were only run from one starting value in the simulation study, which
favors the single-level fit. Still, with the exception of a few rare cases, the multi-level fit
provides a better solution for Mod(2) data. The histograms in supplementary Figure 3 (b)
(bottom panel) shows that the total number of selection errors is yet again smaller for the
multi-level fit (MF).

References

BM., B., Irizarry, R., Astrand, M. and Speed, T. (2003). A comparison of normalization
methods for high density oligonucleotide array data based on variance and bias, Bioinfor-
matics (Oxford, England) 19: 185–193.

Bussemaker, H., Li, H. and Siggia, E. (2001). Regulatory element detection using correlation
with expression, Nature Genetics 27: 167–171.

Charych, E. I., Akum, B. F., Goldberg, J., Jornsten, R. J., Rongo, C., Zheng, J. Q. and

15



Firestein, B. L. (2006). Activity-independent regulation of dendrite patterning by postsy-
naptic density protein psd-95, Journal of Neuroscience 26(40): 10164–76.

Conlon, E., Liu, X., Lieb, J. and Liu, J. (2003). Integrating regulatory motif discovery and
genome-wide expression analy sis, Proceedings of the National Academy of Sciences USA
100: 3339–3344.

Das, D., Banerjee, N. and Zhang, M. Q. (2004). Interacting models of cooperative gene
regulation, Proceedings of National Academy of Science, USA 101(46): 16234–16239.

Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and
density estimation, Journal of the American Statistical Association 97: 611–631.

Fraley, C. and Raftery, A. E. (2004). Bayesian regularization for normal mixture estimation
and model-based clustering, Technical Report 486, University of Washington.

Friedman, J. H. (1991). Multivariate adaptive regression splines, Annals of Statistics 19: 1–
141.

Friedman, J. and Meulman, J. (2002). Clustering objects on subsets of attributes, Technical
report, Department of Statistics, Stanford.

Goff, L. A., Davila1, J., Jörnsten, R., Keles, S., Li, H., Grumet, M. and Hart, R. P. (2006).
Co-regulation of a single mir-9 locus and the adjacent mef2c gene during neuronal differ-
entiation in neural stem cells., submitted to Journal of Neuroscience .

Hertz, G. Z. and Stormo, G. D. (1999). Identifying dna and protein patterns with statistically
significant alignments of multiple sequences, Bioinformatics 15(7): 563–577.

Hoff, P. (2006). Model-based subspace clustering, To appear in Bayesian Analysis.
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All clusters vs GO data base
GO0048731 ”System development”
GO0007399 ”Nervous system development”
GO0030154 ”Cell differentiation”
GO0006928 ”Cell motility”
GO0051674 ”Location of cell”
GO0040011 ”Locomotion”
GO0022008 ”Neurogenesis”
GO0051606 - ”Detection of stimulus”
GO0009582 - ”Detection of abiotic stimulus”
GO0030182 ”Neuron differentiation”

Cluster 1 vs All clusters
GO0006836 ”Neurotransmitter transport”
GO0042063 ”Gliogenesis”
GO0010001 ”Glial cell differentiation”
GO0007399 ”Nervous system development”
GO0031324 ”Neg. regulation of cell metabolism”
GO0048737 ”System development”
GO0006357 ”Neg. reg. RNA polymerase transcription”
GO0001504 ”Neurotransmitter uptake”
GO0048469 ”Cell maturation”
GO0001764 ”Neuron migration”

Cluster 2 vs All clusters
GO0015290 ”El.chem transport activity”
GO0015291 ”Porter activity”
GO0015293 ”Symporter actitivy”
GO0005416 ”Amino acid symporter activity”
GO0048143 ”Astrocyte formation”
GO0015103 ”Anion transport activity”
GO0006820 ”Anion transport”
GO0015380 ”Anion exchange activity”
GO0015108 ”Chloride transporter activity”
GO0015297 ”Antiporter activity”

Table 1: Top 10 GO categories of all clusters, and clusters 1 and 2.
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Cluster 3 vs All clusters
GO0005694 ”Chromosome”
GO0009966 ”Reg. signal transduction”
GO0030900 ”Forebrain development”
GO0007249 ”NFkappa-B cascade”
GO0031175 ”Neurite development”
GO0048666 ”Neuron development”
GO0000785 ”Chromatin”
GO0044427 ”Chromosomal part”
GO0007242 ”Intracell. signal cascade”
GO0007409 ”Axonogenesis”

Cluster 4 vs All clusters
GO0030427 ”Site of polarized cone”
GO0030426 ”Growth cone”
GO0015631 ”Tubulin binding”
GO0005856 ”Cytoskeleton”
GO0008017 ”Microtubule binding”
GO0030018 ”Z-disc”
GO0005886 ”Plasma membrane”
GO0000267 ”Cell fraction”
GO0044228 ”Non-membrane-bound organelle”
GO0017111 ”Nucleoside-triophasphate act.”

Table 2: Top 10 GO categories for clusters 3 and 4.
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Cluster 5 vs All clusters
GO0006767 ”Vitamin metabolism”
GO0005739 ”Mitochondria”
GO0019752 ”Carb. acid metabolism”
GO0006082 ”Organic acid metabolism”
GO0031975 ”Envelope”
GO0031967 ”Organelle envelope”
GO0044237 ”Cell metabolism”
GO0043170 ”Macromolecule metabolism”
GO0009058 ”Biosynthesis”
GO0006865 ”Amino acid transport”

Cluster 6 vs All clusters
GO0044272 ”Sulfur compound biosynthesis”
GO0008652 ”Amino acid biosynthesis”
GO0000097 ”Sulfur amino acid biosynthesis”
GO0006092 ”Pathway of carbohydrate metabolism”
GO0050794 - ”Neg. reg. cell process”
GO0008217 ”Blood pressure regulation”
GO0008202 ”Steroid metabolism”
GO0005624 ”Membrane fraction”
GO0005515 - ”Protein binding”
GO0000267 ”Cell fraction”

Table 3: Top 10 GO categories for clusters 5 and 6.
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Cluster 7 vs All clusters
GO0048729 ”Morphogenesis”
GO0050874 ”Tissue development”
GO0009605 ”Response to external stimulus”
GO0016042 ”Lipid catabolism”
GO0050875 ”Organ. phys. process”
GO0050896 ”Response to stimulus”
GO0008081 ”Phospholiric dieter hydrolase activity”
GO0042330 ”Taxis”
GO0006935 ”Chemotaxis”
GO0005543 ”Phospholipid binding”

Cluster 8 vs All clusters
GO0044421 ”Extracell. region”
GO0043235 ”Receptor complex”
GO0004720 ”Protein-oxidase activity”
GO0007270 ”Nerve-nerve synaptic transmission”
GO0044238 - ”Primary metabolism”
GO0005615 ”Extracellular space”
GO0009653 ”Morphogenesis”
GO0007271 Synaptic transmission
GO0005102 Receptor binding
GO0000902 Cellular morphogenesis

Cluster 9 vs All clusters
GO0006797 ”Phosphorus metabolism”
GO0006796 ”Phosphate metabolism”
GO0006350 ”Transcription”
GO0045449 ”Reg. of transcription”
GO0006351 ”DNA-dependent transcription”
GO0019219 ”Reg. of nucleic acid metabolism”
GO0006468 ”Protein amino acid phosphorylation”
GO0006464 ”Protein modification”
GO0043412 ”Biopolymer modification”
GO0044237 ”Cellular metabolism”

Table 4: Top 10 GO categories for clusters 7, 8 and 9.
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Figure 3: (a) The BIC value of the full model minus the BIC value after
subset selection for both simulation settings: (Mod(1), Mod(2)), and both
fitting strategies (single- (SF) and multi-level (MF) fits). The BIC is always
smaller after subset selection. (b) Histograms of the total number of subset
selection errors for the Mod(1) data (40 parameters total) (top panel) and the
Mod(2) data (41 parameters total) (lower panel). The multi-level fit produce
fewer selection errors in both cases. (c) The BIC of the single-level fit minus
the BIC of the multi-level fit for Mod(1) data, before and after subset selection.
After subset selection, the multi-level fit improves on the single-level fit, even
when the single-level model is correct. (d) The BIC of the single-level fit
minus the BIC of the multi-level fit for Mod(2) data, before and after subset
selection. The multi-level fit improves on the single-level fit in almost all cases.
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