Supplemental Data

THE ROLE OF CALCIUM IN METALLOENZYME: EFFECTS OF CALCIUM REMOVAL ON THE AXIAL LIGATION GEOMETRY AND MAGNETIC PROPERTIES OF THE CATALYTIC DIHEME CENTER IN MauG

Yan Chen,[†] Sunil G. Naik,[†] J. Krzystek,[§] Sooim Shin,[¶] William H. Nelson,^{‡¥} Shenghui Xue,[&] Jenny. J. Yang,^{†&} Victor L. Davidson,[¶] and Aimin Liu*[†]

[†]Departments of Chemistry, &Biology, [‡]Physics and Astronomy, Molecular Basis of Disease Program, Georgia State University, P.O. Box 4098, Atlanta, GA 30303; [¶] Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, and §National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310

Figure S1. The weight-normalized NMR signal amplitude of native (fitted with black traces) and Ca²⁺-depleted (fitted with red traces) MauG as a function of time. The relaxivity T_1 and T_2 values were obtained from the fitting of these data. The r_1 and r_2 values were calculated from the T_1 and T_2 values according to eqs. 2 and 3 as described in the text.

Further Details of the Proton NMR Relaxometry Study

According to the accepted modified equations of Solomon¹ and Bloembergen.²

$$\frac{1}{T_{1}} = \frac{[M]}{55.5} \frac{n}{T_{1m} + \tau_{m}}$$
(S1)
$$\frac{1}{T_{2}} = \frac{[M]}{55.5} \frac{n}{T_{2m} + \tau_{m}}$$
(S2)

Where *n* is the water molecules in the first coordination sphere of the paramagnetic ion of the molarity *m*, T_{1m} and T_{2m} are the longitudinal and the transverse relaxation times of bonded protons and τ_m is the residence time of bonded water. According to equation 1 and 2, the relaxivity of MauG could be influenced by the number of water molecular in the first coordination sphere of ion (*n*). The Ca²⁺ ion in MauG is surrounded by 4 water molecules. The removal of Ca²⁺ from MauG could potentially decrease number of water molecular in the first sphere of ion. When *n* decrease, both of longitudinal and transverse relaxivity of MauG decrease. Besides, the change of T_{1m} and T_{2m} also influences the relaxivity of MauG. The T_{1m} and T_{2m} can be determined by equation S3-S5.

$$\frac{1}{T_{1m}} = \frac{2}{15} C \left[\frac{7\tau_{c2}}{1 + \omega_s^2 \tau_{c2}^2} + \frac{3\tau_{c1}}{1 + \omega_I^2 \tau_{c1}^2} \right] + \frac{2}{3} \left(\frac{A}{\hbar}\right)^2 S(S+1) \frac{\tau_{e2}}{1 + \omega_s^2 \tau_{e2}^2}$$
(S3)
$$\frac{1}{T_{2m}} = \frac{C}{15} \left[4\tau_{c1} + \frac{13\tau_{c2}}{1 + \omega_s^2 \tau_{c2}^2} + \frac{3\tau_{c1}}{1 + \omega_I^2 \tau_{c1}^2} \right] + \frac{1}{3} \left(\frac{A}{\hbar}\right)^2 S(S+1) (\tau_{e1} + \frac{\tau_{e2}}{1 + \omega_s^2 \tau_{e2}^2})$$
(S4)
$$C = \gamma_I^2 g_e^{-2} \mu_B^2 S(S+1) (r^{-6})$$
(S5)

Where ω_I and ω_s are the nuclear and electron larmor precession frequencies, respectively. *S* is the total electron spin. A/ħ is the electron-nuclear hyperfine coupling constant. τ_c and τ_e are the correlation times for dipolar and spin exchange interactions respectively. γ_I is the nuclear gyromagnetic ratio. g_e is the spectroscopic splitting factor. μ_B is Bohr magneton, *r* is the protonmetal distance. EPR/ Mössbauer data indicate that when Ca²⁺ ion was removed from MauG, spin quantum number of high-spin heme decreased from 5/2 to 1/2. According to equation S3-S5, the decrease of *S* increases both T_{1m} and T_{2m} . As shown in equation S1 and S2, the increase of T_{1m} and T_{2m} causes decrease of the longitudinal and transverse relaxivity (1/ T_1 and 1/ T_2), respectively.

References

- (1) (2)
- Solomon, I. *Phys. Rev.* **1955**, *99*. BLoembergen, N. J. Chem. Phys. **1957**, *27*.