SUPPLEMENTAL INFORMATION

Belonging to the manuscript:

Functional analysis of the N-acetylglucosamine metabolic genes of *Streptomyces*

coelicolor and role in the control of development and antibiotic production

by Magdalena A. Świątek, Elodie Tenconi, Sébastien Rigali and Gilles P. van Wezel

Plasmid	Description	Reference
pWHM3	Cloning vector, <i>colE1</i> replicon, pSG5 replicon, TsrR, AmpR	(3)
pHJL401	Complementation vector, SCP2*, pUC19 replicon, TsrR, AmpR	(2)
pUWLcre	pUWL <i>ori</i> T derivative with <i>cre(a)</i> gene under <i>ermE*</i> promoter	(1)
pGAM1	pWHM3 containing flanking regions of <i>S. coelicolor</i> SCO4284 with apraloxP_ <i>Xba</i> I inserted between them in pWHM3 <i>Eco</i> RI- <i>Hind</i> III	This work
pGAM2	pWHM3 containing flanking regions of <i>S. coelicolor</i> SCO5236 with apraloxP_ <i>Xba</i> I inserted between them in pWHM3 <i>Eco</i> RI- <i>Hind</i> III	This work
pGAM3	pWHM3 containing flanking regions of <i>S. coelicolor</i> SCO4285 with apraloxP_ <i>Xba</i> I inserted between them in pWHM3 <i>Eco</i> RI- <i>Hind</i> III	This work
pGAM4	pWHM3 containing flanking regions of <i>S. coelicolor</i> SCO4284-SCO4285 operon with apraloxP_ <i>Xba</i> l inserted between them in pWHM3 <i>Eco</i> RI- <i>Hind</i> III	This work
pGAM5	pHJL401 containing nagKA gene with its promoter	This work
pGAM6	pHJL401 containing <i>nagB</i> genes with its promoter	This work

Table S1. Plasmids used and constructed in this study.

Table S2. Oligos used in this study. Restriction sites used for cloning are in bold and underlined. GAATTC, EcoRI; TCTAGA, XbaI; AAGCTT, HindIII;

	5'-3' Sequence	Purpose and
Name	·	restriction
		sites
nagA LF-1365	GTCA GAATTC ACGTCGTTCCAGGAGTAGACGGTG	Cloning, <i>EcoRl</i>
nagA LR+6	GTCA TCTAGA GGCCATCAGGTGGTTACC	Cloning, Xbal
nagA RF+1133	GTCA TCTAGA CACCTGGGCTGATCCGGCTCC	Cloning, Xbal
nagA RR+2484	GTCA AAGCTT TGAACGTGCGCTACGGCATCC	Cloning, HindIII
nagB_LF-1185	GTCA GAATTC AAGAGCGACCGCTTGTCGCCGAA	Cloning, EcoRl
nagB LF+6	GTCATCTAGATTCCACGCTGGCCTGCCGTTT	Cloning, Xbal
nagB_RF+770	GTCATCTAGATGGCAGGGCATCTGAGCTGTC	Cloning, Xbal
nagB_RR+1918	GTCAAAGCTTGTGATGAGCGCCCACATCCTGG	Cloning, <i>HindIII</i>
nagK_LF-1450	GTCA GAATTC ATGTACGGCACCGTAACGCCCA	Cloning, EcoRI
nagK_LR+6	GTCA <u>TCTAGA</u> CTTCATCCCGGTGCCGCCCACATC	Cloning, <i>Xbal</i>
nagK_RF+963	GTCATCTAGAGAGGTAACCACCTGATGGCCCCAAG	Cloning, Xbal
nagK_RR+2570	GTACAAGCTTCTCGTTGAGCTGGGTGGTGTCG	Cloning, HindIII
APRA_loxL	CTAGG TCTAGA GGTGATGGATAACTTCGTATAGCATAC	Cloning, <i>Xbal</i>
	ATTATACGAAGTTATACTTATGAGCTCAGCCAATCG	
APRA_loxR	CTAGG <u>TCTAGA</u> GATGCGCGATAACTTCGTATAATGTAT	Cloning, <i>Xbal</i>
	GCTATACGAAGTTATCCCCGAAGCAGGGTTATGCAG	
5236compl-454	GTCA <u>GAATTC</u> GCACGGCGGTGATGCCGGACAAC	Cloning, <i>EcoRl</i>
5236compl+773(GTCA <u>AAGCTT</u> GCGGGACAGCTCAGATGCCCTGC	Cloning, <i>HindIII</i>
796)		
SCO4285-	GTCA <u>GAATTC</u> ACCGGGATGGAGAGCACGTCGTC	Cloning, <i>EcoRl</i>
84compl-512		
SCO4285-	GTCA <u>AAGCTT</u> ACGGTGAGGATCACCGTGCCGA	Cloning, <i>Hindill</i>
04C011101+2240(0		
rand EOR-198	ΤΓΔΓΓΤΤΓΓΔΩΔΔΔΓΤΩΓΓΩΩΔΩ	PCR
		confirmation
		sequencina
nagA REV+1417	AGCCGGTGACCGTGACCTCGTGG	PCR
		confirmation,
		sequencing
nagB_FOR-336	CGCCCGGCATCATCGACACGGAC	PCR confirmation
nagB_REV+1098	TCGCGGGCGTCTGACGATCACC	PCR confirmation
nagK_FOR-208	AGGACCGCCGTCATGCCCAGTG	PCR confirmation
nagK_REV+1310	ACGATGTCGCCCTGCTGCGCCAG	PCR confirmation
SCO4285for_seq	GTCA <u>GAATTC</u> AGTGCGGACACCACCGCGATCG	Sequencing,
		EcoRI
SCO4285rev_seq	GTCA AAGCTT AGAACCTTGCTTGGGGGCCATCAG	Sequencing, <i>HindIII</i>
2907for_seq	GTCA <u>GAATTC</u> GCGCCTGTGATCAGGGGACTTGG	Sequencing, EcoRI
2907rev_seq	GTCAAAGCTTTGTACGAGATCTGAGCCCGCGAC	Sequencing, <i>HindIII</i>
2905for_seq	GTCA <u>GAATTC</u> TGACCGCGCTGTCGGCACTC	Sequencing, EcoRI

2905rev_seq	GTCA <u>GAATTC</u> TGACCGCGCTGTCGGCACTC	Sequencing, <i>HindIII</i>
2906for_seq	GTCA <u>GAATTC</u> AGTCGGGTGATGCAGCCTTCG	Sequencing, <i>EcoRI</i>
2906rev_seq	GTCA <u>AAGCTT</u> TCGCGAGACCACTCCCAAAGG	Sequencing, <i>HindIII</i>
4284RTfor	ACATCGTTGGCATCCACTTC	RT-PCR
4284RTrev	CGCCAGCGTCATCATCTT	RT-PCR
4285RTfor	CGTCACCTTCCAGAAACTGC	RT-PCR
4285RTrev	CTGTGGAAGACGGAGCAGA	RT-PCR
rpsIRTfor	GTAGCGGTTGTCCAGCTCGAGCA	RT-PCR
rpsIRTrev	GAGACCACTCCCGAGCAGCCGC	RT-PCR
5236_RT1	CGACTCGCGGTGCTCGGCGGG	RT-PCR
5236_RT2	GATGCCAAGGCGGGCGGCGAAC	RT-PCR
dredasA	CAAGCTCCCCGTACTGGTCTACACCATTGGTCCAGGTC CC	EMSA
drenagB	CCGCTCTGTTAGATTGGTCTAAACCACATAGCCAGTCC CGG	EMSA
drenagKA	CGTACACCCGGGAGAGGTCTAGTCCACTGCGGTGGTG TAG	EMSA
<i>blal cis</i> -acting element OP1	GAAAGTATTACATATGTAAGATTTAAATGC	EMSA

A R2YE bottom 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R2YE+1% fructose

R2YE+1% glycerol

R2YE+1% xylose

R2YE+1% glucose

R2YE+1% mannitol

R2YE+1% galactose

Figure S1. Phenotypes of the *nag* mutants. Strains were grown for four days on (A) R5- agar plates supplemented with 1% (w/v) of different carbon sources (glucose, fructose, galactose, glycerol, maltose, mannitol, mannose, or xylose) as indicated, or (B) on SFM agar plates. For each plate the top (left) and bottom (right) view is presented. <u>Strains:</u> **1.** *S. coelicolor* M145 (parental strain), **2.** GAM1 (M145 Δ *nagA*), **3.** GAM4 (M145 Δ *nagA*^{IFD}), **4.** GAM4 + pHJL401/*nagA*, **5.** M145 Δ *nagE2*, **6.** GAM2 (M145 Δ *nagB*), **7.** GAM5 (M145 Δ *nagB*^{IFD}), **8.** GAM5 + pHJL401/*nagB*, **9.** GAM3 (M145 Δ *nagA*), **10.** GAM6 (M145 Δ *nagK*^{IFD}), **11.** GAM6 + pHJL401/*nagKA*, **12.** M145 Δ *nagA*^{IFD} Δ *nagB*, **13.** GAM9 (M145 Δ *nagK*^{IFD} Δ *nagB*). For strains see further Table 1 and the text. **IFD**, inframe deletion mutant.

Figure S2. Quantificaton of antibiotic production after 120 hr of growth. Production of actinorhodin was quantified relative to the production by the parental strain *S. coelicolor* M145 (which was set to 100%). Cultures were grown for 120 hr on R2YE agar plates with (dark bars) or without (light bars) GlcNAc. For 42 hr and 48 hr see main text and Fig. 6.

BAP5 GAM2 GAM5 GAM13

Fig. S3. Complementation of the *nagA* and *nagB* mutants. Left, patches of *S. coelicolor* M145 and derivatives on MM agar plates with either mannitol (top) or GlcNAc (bottom) as the sole carbon source. Right, idem but then on R5 agar plates. Note that complementation of *nagA* IFD mutant GAM4 with a plasmid harbouring the *nagKA* operon (strain GAM12) restores sensitivity to GlcNAc on R5, while complementation of *nagB* IFD mutant GAM5 with a plasmid harbouring the *nagB* gene (strain GAM13) restores normal growth and viability on MM and R5 with GlcNAc and normal GlcNAc sensing on R5. The *nagE2* mutant BAP5, which is insensitive to GlcNAc, was used as a control. Patches were grown for 4 days at 30° C.

References

- Fedoryshyn, M., E. Welle, A. Bechthold, and A. Luzhetskyy. 2008. Functional expression of the Cre recombinase in actinomycetes. Appl Microbiol Biotechnol 78:1065-70.
- Larson, J. L., and C. L. Hershberger. 1986. The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid 15:199-209.
- Vara, J., M. Lewandowska-Skarbek, Y. G. Wang, S. Donadio, and C. R. Hutchinson. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in *Saccharopolyspora erythraea* (*Streptomyces erythreus*). J Bacteriol 171:5872-81.