Supplementary Information

Absorbance (OD 600)

Supplementary Figure 1: Cell-culture Infection Dynamics for TUS and ISC Pathway Knockout Strains Infected with Lambda Phage.

Supplementary Figure 2: Cell-culture Infection Dynamics for *E. coli* Knockouts of Genes Known to Affect Frameshifting.

Supplementary Figure 3: Immunobloting of pBAD- λ GT in BW25113, and Several Strains from both the TUS and ISC Pathways. We induced expression of the pBAD- λ GT transcript with 0.02% L-arabinose for 2 hours and assessed the gpG and gpGT protein levels by immunoblotting against the Xpress Epitope tag. We found a decrease in gpGT levels in *AiscU, AhscA, AhscB and possibly AiscU.* We found an increase in gpGT levels in *AiscU, AmmA, Athil* and *AtusAA*iscU and possibly in *AiscR. AmiaB, AttcA, Afdx*, and *AiscA* showed gpGT levels similar to wild-type BW25113.

Supplementary Figure 4: Cell-culture Infection Dynamics for *E. coli* Knockouts for tusA, *iscU*, and *tusA,iscU* Double Knockout.

Supplementary Table 1: Description of Parameters in Competitive Inhibition

Model vs. Independent Effect Model.

	Competitive Inhibition Model	Independent Effect Model	Value
Dissociation constant for IscS	kd. IscS-Cvs	N/A	$2.7 \cdot 10^{-6}$
and cysteine	-,	,	
Dissociation constant for IscS	k _{d, IscS-IscU}	Kd, IscS-IscU	$2 \cdot 10^{-6}$
and IscU			
Dissociation constant for IscS	$k_{ m d, IscS-TusA}$	Kd, IscS-TusA	$1.2 \cdot k_{d,IscS-IscU}$
and TusA			
Forward rate of IscS and	k_1	N/A	10 ⁵
cysteine interaction			
Reverse rate of IscS and	<i>k</i> -1	N/A	$k_1 \cdot k_{d,IscS-Cys}$
cysteine interaction			
Rate of formation of thiolated	k_2	N/A	0.1417
IscS			-
Forward rate of thiolated	k_3	$k_{1\mathrm{f}}$	105
IscS and IscU interaction	-	_	
Reverse rate of thiolated IscS	<i>k</i> -3	k_{1r}	$k_3 \cdot k_{d,IscS-IscU}$
and IscU interaction			
Irreversible rate of formation	k_4	N/A	k_{-3}
of thiolated IscU			
Forward rate of thiolated	k_5	$k_{2\mathrm{f}}$	105
IscS and TusA interaction			
Reverse rate of thiolated IscS	<i>k</i> -5	k_{2r}	$k_5 \cdot k_{d,IscS-TusA}$
and TusA interaction			
Irreversible rate of formation	k_6	N/A	k_4
of thiolated TusA			
Irreversible rate of sISC	<i>k</i> ₇	k_{3f}	105
modification	,	7	7
Irreversible rate of sTUS	<i>k</i> ₈	$K_{ m 4f}$	<i>k</i> ₇
modification	,	7	0.05
Rate of lambda infection	Ki	Ki	0.25
(normalized)	6	6	0.02
Frequency of lambda lytic	Ĵ	Ĵ	0.93
decision	*	*	0.0
Lysogen growth rate	μ	μ	0.3
(normalized)	1/*	12*	0.4
Lysogen carrying capacity	K	K	0.4
(normalized)	1	7	0
Rate of lysogen induction	Ks	K_S	U

(normalized)			
Burst rate for competitive	b	N/A	$10 \cdot \frac{\text{sTUS} + \text{sTUS}_{WT}}{10}$
inhibition model			sTUS _{WT}
Burst rate for independent	N/A	b	$10 \cdot \frac{\text{sTUS} + \text{sTUS}_{WT}}{10}$
effect model			sTUS _{WT}
			$-50 \cdot \frac{\text{sISC} - \text{sISC}_{WT}}{}$
			sISC _{WT}