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Supplementary Background: 
 
Mapping of complete interactomes using structural complexes.  

A few attempts have been made to map the interactome of yeast on a large scale using 

structural complexes. For example, Aloy and Russell introduced a scoring scheme to 

assess the fit of any interacting pair on a structural complex of homologous proteins 

(Aloy & Russell, 2002). They searched for Pfam domains in contact in the same 

structure, and inferred potential interactions from homologous structural complexes. The 

authors found 59 out of 2590 high-throughput interactions using the yeast interactome 

that could be mapped to structurally inferred complexes. The advantage of this method 

lies in the evaluation of the statistical significance and reliability of predicted interactions 

using empirical potentials. Later Kim et al. addressed the topic of finding mutually 

exclusive and interfaces by mapping the yeast interactome using sequence similarity 

between proteins from high-throughput interactions and known protein complexes (Kim 

et al, 2006). As a result, they composed a network containing 873 nodes and 1269 edges. 

Most recently a PRISM protocol was introduced for the prediction of protein-protein 

interactions on the proteome scale using known template protein-protein interfaces 

(Ogmen et al, 2005; Tuncbag et al, 2011). The idea of this approach relies on the 

similarity of interfaces (not necessarily folds) of interacting proteins. The authors looked 

for similarity between surface regions of target proteins to known template interfaces and 

considered both geometric complementarity and evolutionary conservation of binding hot 

spots. 

The framework described in this study uses homology inference similar to the first 

two methods. The strength of our approach is that it ensures close evolutionary 

relationships between structural complexes and target proteins, and verifies the 

interactions and binding interfaces by several means. First, it examines the evolutionary 

conservation between homologous complexes under the assumption that if the binding 

site is conserved among non-redundant homologs, it is more likely to be biologically 

relevant (sites that are not conserved and lineage specific might be excluded unless they 

are very similar to the query based on the ranking score, see below). Second, our 

approach uses algorithms to infer correct biological units and, finally, it applies a 



rigorous scheme to rank binding sites with respect to their relevance to the target protein. 

Such a ranking scheme includes sequence-PSSM score (where the Position Specific 

Scoring Matrix is constructed based on the alignment of binding sites from homologous 

complexes), overall sequence similarity between target protein and its homologs with 

known complexes, and the number of interface contacts. It should be mentioned that such 

a rigorous verification of interactions upon homology inference is essential since 

common descent does not necessarily imply similarity in function or interactions. 

Annotations transferred from one protein to a homolog may result in incorrect functional 

or interolog assignment at larger evolutionary distances, even for close homologs if they 

have different binding specificities. Since binding specificity is usually determined by the 

structural and sequence features of protein interaction interfaces, it is essential to detect 

and transfer binding sites correctly. To verify and guide predictions based on inference, 

one needs to ensure similarity between sites on the unknown target protein and on the 

conserved binding sites detected in homologs. Moreover, the PDB asymmetric unit which 

is usually used to infer interactions does not necessarily correspond to the biological state 

of a given protein. According to several studies (Jefferson et al, 2006; Xu et al, 2008), 

more than 20% of PDB complexes represent crystallographic packing errors and about 

30% of PDB entries should be reconstructed by applying crystallographic symmetry 

operations.  

 
Supplementary Methods: 
 
Major steps of the IBIS method for predicting protein interaction partners and 

binding site locations 

 

- Collecting homologs with observed interactions  

To infer interactions based on homology we first collected template proteins with known 

structures that are similar to a given query protein and have at least 80% sequence 

identity and more than 80% of the query sequence aligned using cBlast. For each 

template protein we retrieved all homologous (with more than 30% identity) and 

structurally-similar proteins with the known structural complexes from the Protein Data 

Bank. Template and homologous structural complexes were structurally aligned using the 



VAST algorithm. Subsequently, homologous complexes were grouped based on their 

binding site similarity, assuming that a binding site is functionally important and is not 

lineage specific if it is evolutionarily conserved among non-redundant homologs.  

 

- Measuring binding site similarity 

We cluster domain-binding sites into groups based on their sequence and structure 

similarity.  The similarity score between two positions i and j of two binding sites is 

defined as (Thangudu et al, 2010):  

 

𝑆𝑖𝑗 = 𝐻�𝑎𝑖,𝑎𝑗�∆𝑖𝑗 + 𝜽∆𝑖𝑗 + 𝑤�1 − ∆𝑖𝑗�  

  

where H is the corresponding element of the BLOSUM62 matrix; Δij is equal to 1 if two 

positions are aligned and 0 otherwise; 𝜽 is an additional weight of “+1” added to each 

structurally equivalent position, and w is a gap penalty of “-4”.  The overall similarity 

score between two binding sites is calculated by summing Sij over all positions in the 

gapped alignment.  

 

- Clustering of binding sites 

The binding sites of the homologous structure neighbors are clustered using a complete-

linkage clustering algorithm, which calculates the distance between two clusters as the 

maximum distance between their members. A distance cutoff value to define the clusters 

is chosen using a pseudo-free energy function from a study which maximizes the mean 

similarity of members within a cluster and minimizes the complexity of the description 

provided by cluster membership (Slonim et al, 2005). At the end of this procedure sets of 

binding residues (“binding sites”) from different homologs of the query protein are 

grouped together based on their similarity.   

 

- Ranking of binding site clusters 

All binding site clusters are ranked in terms of biological relevance and similarity to the 

query.  First, we check whether the same or similar binding sites reoccur in diverse 

protein complexes and assess their conservation within the cluster. Clusters that have 



more than one non-redundant protein (at a sequence identity threshold of 90%) in the 

cluster are called “conserved binding site” clusters. Those clusters with only one non-

redundant protein complex are considered “singletons” and usually correspond to either 

lineage specific binding modes or cases lacking enough conservation evidence.  

Second, since the larger interfaces are more likely to be biologically relevant, the 

ranking score also includes a term corresponding to the number of interfacial contacts 

averaged over all homologous complexes (Zcontact). Another term in the ranking score 

accounts for the relevance of a given binding site cluster to the query.  A position specific 

score matrix (PSSM) is constructed based on the binding site alignment using the implicit 

pseudo-count method. The aligned binding site region of the query protein is scored 

against the PSSM, and a sequence-PSSM score is calculated (ZPSSM). A higher sequence-

PSSM score implies a higher probability of this site being biologically relevant for 

annotating the given query. In addition, we calculate the average sequence identity 

between the query and all cluster members over the whole structure-structure alignment 

(not just binding sites) to estimate the evolutionary distance between the query protein 

and the group of homologous structure neighbors (Zpcnt). 

All components of the ranking score (i.e. PSSM, conservation, contact number, and 

percent identity of the alignment) are converted to Z-scores, and their weighted 

combination is used where weights were determined empirically. 

 

- Validation of interactions using the PISA algorithm 

Interfaces present in PDB asymmetric units (ASU) are validated using the PISA (Protein 

Interfaces, Surfaces, and Assemblies server) algorithm (Krissinel & Henrick, 2007) 

which is considered to be one of the best methods for identifying biologically relevant 

interfaces present in crystal structures. PISA is an automated method for detecting 

macromolecular assemblies based on the analysis of interfaces and stability of assemblies 

reported in crystal structures. PISA uses chemical thermodynamics calculations to 

compute a set of macromolecular assemblies, which are expected to be stable in solution 

and presumed to represent the biological form of a protein in the cell. 

 

- Assessing the accuracy of the method 



The accuracy of the IBIS method for predicting protein interaction partners and binding 

site locations, was found to have 88% sensitivity and a recall value of 71% (Tyagi et al, 

2011). We address the question of predicting the biological interfaces that are not present 

in the PDB asymmetric unit and need to be reconstructed by applying crystallographic 

symmetry operations. We show that almost half of such interfaces can be reconstructed 

by IBIS without the prior knowledge of crystal parameters of the query protein. 
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Supplementary Figures: 

 
 
Suppl. Figure 1| Comparisons of structurally inferred (SI) to high-throughput (HTP) and 
high-confidence (HC) interactions of single proteins. We calculated Jaccard distances 
between interactions of a given protein that appeared in the HTP, HC and SI networks at 
different inference thresholds. We only considered proteins that appeared in both 
networks. Averaging Jaccard indexes over all proteins, error bars indicate 95% 
confidence intervals. 
 
 

 
 
Suppl. Figure 2| Mean node degrees are plotted for (a) structurally inferred (SI) and 
high-throughput (HTP) networks and (b) structurally inferred (SI) and high confidence 
(HC) networks using different inference thresholds. In both cases, we only considered 
interactions between proteins that appear in both compared networks. Furthermore, 
structurally inferred interactions were either experimentally ‘observed’ or derived from 
conserved binding site clusters. 
 



 

 

 
 
Suppl. Figure 3| Mean clustering coefficients are plotted for (a) structurally inferred (SI) 
and high-throughput (HTP) networks and (b) structurally inferred (SI) and high 
confidence (HC) networks using different inference thresholds. In both cases, we only 
considered interactions between proteins that appeared in both compared networks. 
Furthermore, structurally inferred interactions were either experimentally ‘observed’ or 
derived from conserved binding site clusters. 
 

 
 
 
Suppl. Figure 4| Mean shortest path lengths are plotted for (a) structurally inferred (SI) 
and high-throughput (HTP) networks and (b) structurally inferred (SI) and high 
confidence (HC) networks using different inference thresholds. In both cases, we only 
considered interactions between proteins that appear in both compared networks. 
Furthermore, structurally inferred interactions were either experimentally ‘observed’ or 
derived from conserved binding site clusters. 
 
 

 



 
 
Suppl. Figure 5| Mean betweenness centralities are plotted for (a) structurally inferred 
(SI) and high-throughput (HTP) networks and (b) structurally inferred (SI) and high 
confidence (HC) networks using different inference thresholds. In both cases, we only 
considered interactions between proteins that appear in both compared networks. 
Furthermore, structurally inferred interactions were either experimentally ‘observed’ or 
derived from conserved binding-site clusters. 
 
 

Suppl. Figure 6| Utilizing all structurally inferred interactions, we found several modules 
that were functionally coherent. 
 



 
 
Suppl. Figure 7| After we structurally inferred protein interactions with inference 
threshold of more than  50% (SI) we only considered experimentally determined high 
confidence (HC) and structural interactions between proteins that appeared in both 
networks. Furthermore, structurally inferred interactions were either experimentally 
‘observed’ or derived from conserved binding site clusters. In (a) we found that 
distributions of interacting proteins in all networks have a power-law tail. (b) Indicating 
modularity in the given networks, we observed a power-law dependence between the 
number of interaction partners and the clustering coefficient in all networks. 
 

 

 
 
 
 


