
Supplementary Methods 

 

TI-SWR – TI-SWR analysis was performed in Matlab using the stepwise function in conjunction 

with several scripts to automate analysis iterations and post-processing of results.   

 

Dependent variable data vectors (6x1) were generated to capture the change in specific cellular 

phenotypes from time, t-1, to time, t, following DNA damage for a subset of the cellular 

phenotypes measured.  This metric was calculated as follows:    
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The subset of cellular phenotypes analyzed includes: 1) ΔcC3+/cPARP+6-12hr, 2) ΔcC3+/cPARP-

6-12hr, 3) ΔcC3-/cPARP-6-12hr, 4) ΔG112-24hr, 5) ΔS12-24hr, 6) ΔG2/M12-24hr.  These phenotypes were 

chosen for analysis based on large dynamic changes in these measurements over the indicated 

time-periods.  For example, the dependent variable vector capturing the change in percentage 

of cells in S phase between 12 and 24 hr following DNA damage would look like: 

 

 

 

Independent variable data matrices (6x14) were generated for each of the 10 time-points at 

which signaling data was measured.  Each of these 10 independent variable matrices capture 

the activities and/or levels of the 14 signals measured under each of the 6 treatment conditions 

investigated, at a single one of the ten time-points.  For example, a single column of the 



independent variable matrix capturing the signal activity/levels at 4 hr following DNA damage 

would look like: 

 

 

 

A second column captures the p-ERK1/2 measurements under all 6 treatment conditions, a third 

column captures the p-JNK measurements, etc.  A forward stepwise regression algorithm, 

implemented as a built-in function in MATLAB, was used to regress a single dependent variable 

data vector, representing the change in a single cellular phenotype over time, on each of the 

independent variable matrices constructed for time-points preceding the cellular phenotype 

under investigation, in turn.  For example, if we investigate the potentially causal relationship 

between time-dependent signaling events and the change in percentage of apoptotic cells 

between 6 and 12 hr following DNA damage, we regress a dependent variable data vector that 

looks like this: 

 

 

 

on each of the independent variable matrices constructed for time-points prior to or at the 12 hr 

time-point (e.g. independent variable matrices constructed for the 0.25, 0.5, 1, 1.5, 2, 4, 8 and 



12 hr time-point), as only measured signaling that occurs prior to or at the time of the phenotype 

is potentially causal.   

 

A multiple linear regression analysis posits that all n independent variables contribute to the 

dependent variable with some weight, βn, and a final model with n independent variables looks 

like: 

 

 

 

where Y is the dependent variable, β0 is a constant term, β1…βn are regression coefficients for 

independent variables x1…xn and ε is the residual error.  Here we use the stepwise regression 

method to identify which, if any, of the measured signals at a given time-point following DNA 

damage correlate with and are potentially causal for a cellular phenotype that follows the 

signaling event. 

 

 A stepwise regression analysis with forward selection is an iterative variable selection method 

for unbiased identification of locally optimal regression models that include only a subset of the 

candidate independent variables.  The overarching hypothesis is that not all, and perhaps none, 

of the independent variables contribute to the dependent variable, such that an initial model 

looks like: 

                

 

Next, the effect of adding any single variable of the n independent variables to the model is 

tested such that all univariate regression models are sampled, e.g.: 

 

 

 

 

 

 

where xi is one of the n signaling measurements at a specific time-point and β i is the associated 

regression coefficient.  If any of the time-dependent signals in the independent variable matrix 

are correlated with the cellular phenotype, a univariate model including that signal will provide a 



better fit of the data than the initial null model.  Provided that at least one of the signals in the 

independent variable matrix is correlated with the cellular phenotype, the current model is 

updated to the univariate model that includes the single most strongly correlated signal.  For 

inclusion, a variable was required to display an R2  0.65, and the slope of the subsequent 

regression line had to be statistically significantly different from 0 (as confirmed by a p-value 

0.05 using a linear regression t-test).  

 

Next, the effect of adding any second variable from the set of n-1 remaining independent 

variables to the current univariate model is tested such that all bivariate models are sampled 

holding the first included independent variable constant.  For example, if independent variable 

x2 provides the best univariate model, then subsequent bivariate models tested would look like:   

 

 

 

 

 

 

If the addition of any signal improves the model fit, the signal whose addition to the model most 

significantly improves the correlation with the dependent variable cellular phenotype is added .  

The addition of signals to the model stops when the addition of no other signal significantly 

improves the correlation between the signals and the cellular phenotype.   

 

For each cellular phenotype investigated (see above), this process of variable selection and 

model building is used to build a model relating time-dependent signals to phenotype for each of 

the signal measurement time-points that precede the phenotype such that a set of time-point 

specific signal-phenotype models is associated with each phenotype.  For example, the change 

in the percentage of apoptotic cells between 6 and 12 hr following DNA damage can at most be 

associated with 7 time-dependent signal-phenotype models (for 0.25, 0.5, 1, 2, 4, 8, 12 hr 

following DNA damage), but might for example be associated with only 5 time-dependent 

signal-phenotype models if no signals are significantly correlated with the phenotype at 2 of 

those time-points.  

 



Supplemental Figure Captions 

 

Supplemental Figure 1.  G1 cells contains markers of DSBs following doxorubicin 
exposure. Cells were treated with 2µM doxorubicin as in Figure 1, stained for γH2AX and DNA 
content (propidium iodide) at 8 hrs after the onset of treatment, and analyzed by flow cytometry.  
Nearly 50% of cells in G1 (2N DNA content) stained positively for γ-H2AX, compared with 
~90% of cells in S or G2/M.  Data is the mean of 2 experiments with error bars denoting 
standard error of the mean.  

Supplemental Figure 2. Representative single dataset. Quantification of Western blot and 
flow cytometry data for one of the six treatment conditions investigated (2 µM doxorubicin 
without TNF-α). Signal activation data is plotted normalized to the maximum value reached for 
each signal under this treatment condition, which was assigned a value of 1.0. Cell cycle and cell 
death responses measured by flow cytometry data are shown as raw percentage of the total 
population. Mean values and standard error of the mean are shown for 2-3 independent 
experiments for all signaling measurements except p-ATM, and for ≥ 4 independent experiments 
for cell response measurements. 

Supplemental Figure 3. Quantification of Western blot data for signaling measurements of 
activity under all six treatment conditions investigated.  Measured signals quantified include 
p-Nbs1 (S343), p-H2AX (S139), NFκB-DNA binding activity (via capture ELISA), p-p38 
(T180/Y182), p-JNK (T183/Y185), p-Akt (S473), p-ERK1/2 (T202/Y204), p-p53 (S15), and 
total p53.  Data is the mean of 2-3 independent experiments and is normalized to the signal 
measured at 0 hr (prior to treatment) to yield a measure of “Signal Intensity”.  Error bars denote 
standard error of the mean. When not visible, the error bars are obscured by the plot symbol.     

 Supplemental Figure 4.  The majority of predictive power for apoptosis in PLSR models is 
captured by 2 principal components, with or without core DNA damage response molecules 
as independent variables.  (A)  Quantification of the cumulative variance captured by the 
model (R2(cum.)), and cross-validated capability of the model to predict the percentage of 
apoptotic cell-death between 6 and 12 hr following treatment (Q2(cum)), for a PLSR  model 
retaining 1, 2 or 3 principal components.  Cross-validated predictive capability is 0.28, 0.69 and 
0.75 with 1, 2, or 3 principal components, respectively, indicating that retention of a third 
principal component does not contribute much marginal predictive power.  (B) Quantification of 
the cumulative variance captured by the 2-component model (R2(cum.)), and cross-validated 
capability of the model to predict the percentage of apoptotic cell-death between 6 and 12 hr 
following treatment (Q2(cum)), for four separate 2-component PLSR  models built with 
independent variable sets consisting of either (1) all measurements of signal activity, (2) only 
measurements of signal activity from ‘core’ DDR signals (p-ATM, p-H2AX, p-Nbs1, p-p53, 
total p53, p-p38), (3) only measurements of signal activity from ‘non-core’ DDR signals (p-



ERK, p-JNK, p-Akt, p-p38, NFκB), and (4) only measurements of total protein levels (total 
Nbs1, H2AX, ERK, Akt, JNK; not including any measurements of signal activity).  (p-p38 
MAPK was included in both the non-core and core DDR signaling sets, since, while p38 
signaling is not generally considered part of the canonical DNA damage response (Zhou & 
Elledge, 2000), data from our lab and others suggests that it functions downstream of ATM and 
ATR in this context, and can make important contributions to the phenotypic response (Lafarga 
et al, 2009; Raman et al, 2007; Reinhardt et al, 2007).  Cross-validated predictive capability is 
high and relatively constant across the first three models built with all activity data, core-DDR 
signal activity data, or non-core DDR signal activity, indicating that non-core DDR signal 
activity independently contains information regarding the cellular life-death decision following 
DNA damage that can be used to predict the life-death decision.  A model built with only total 
protein levels in the independent variable set has dramatically lower predictive power, indicating 
that measures of activity contain far more predictive information than total protein levels. 

Supplemental Figure 5.  The majority of the predictive power for cell cycle progression in 
PLSR models is captured by 2 principal components.  Quantification of the cumulative 
variance captured by the model (R2(cum.)), and cross-validated predictive capability (Q2(cum)) 
of PLSR models retaining 1, 2 or 3 principal components was examined using (A) the percentage 
of cells in G2/M at 24 hr following treatment, or (B)  the percentage of cells in G1 at 24 hr 
following treatment as dependent variables.  Retention of a third principal component contributes 
minimally to the predictive power of the model.   

Supplemental Figure 6.  Late Akt activity after DNA damage is a pro-survival signal.  Cells 
were treated with 10µM doxorubicin as in Figure 1.  The AKT inhibitor VIII (CalBiochem) was 
present either from 0-2 hrs, or from 4 hrs onwards, and apoptotic cells quantified by flow 
cytometry at 12 hrs following treatment.  Inhibition of AKT during the first 2 hrs after damage 
had little effect on cell death, while inhibition of late AKT activity resulted in a pronounced 
increase observed following the inhibition of late AKT activity. Data is the mean of 2 
experiments with error bars denoting standard error of the mean.    

Supplemental Table 1.  A summary of signaling measurements used in this study. 

Supplemental Table 2.  Non-Erk predictors of S-phase progression after DNA damage 
identified by TI-SWR do not co-correlate with Erk activity.  To computationally examine 
whether Erk activity indirectly affected other signaling molecules that were responsible for 
controlling S-phase progression, we used TI-SWR to correlate time-dependent signals with S-
phase progression from 12 to 24 hrs, this time omitting ERK data from the candidate 
independent variable sets.  Signals at only 4 time points showed statistically significant 
correlations with S-phase progression: levels of γH2AX + total H2AX at the 2 hr time point,  
levels of phospho-Nbs1 at the 4 hr time point, and levels of total p53 at the 16 and 24 time 
points.  Regression coefficients (β), p-values, and the marginal increase in the correlation 
coefficients of the model for each of the independent variables are shown; asterisks indicate the 



primary signal from the univariate models.  A second round of TI-SWR was then performed to 
investigate time-dependent co-correlations of other signals with this subset of S-phase correlated 
signals, focusing on whether ERK activity at any time point co-correlated with, and was 
potentially causal, for any of these ‘second choice’ S-phase signal correlates.  No such co-
correlation between Erk and these other signals was detected. 
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0.86

-1.8
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