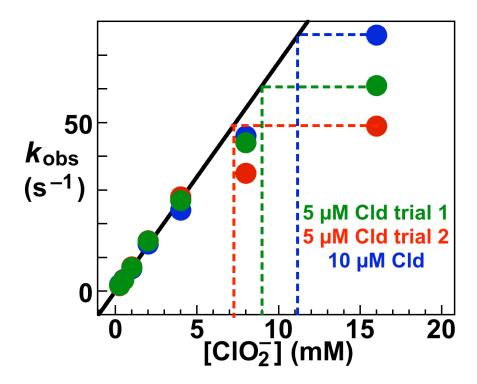
SUPPORTING INFORMATION

O₂-evolving Chlorite Dismutase as a Tool to Study O₂-Utilizing Enzymes[†]

Laura M. K. Dassama, Timothy H. Yosca, Denise A. Conner, Michael H. Lee, Béatrice


Blanc, Bennett R. Streit, Michael T. Green, Jennifer L. DuBois, Carsten Krebs, Abs. J.

Martin Bollinger, Jr. Abs.

Departments of ^aBiochemistry and Molecular Biology and ^bChemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 and ^cDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556

Table S1: EPR spin quantification obtained from a range of packing factors					
	Packing factor	Total spin (mM)	Mono Mn ^{II} (mM)	X (mM)	Mn ^{IV} /Fe ^{IV} (mM)
	0.50	2.18	0.60	0.13	1.45
	0.52	2.09	0.62	0.13	1.34
	0.54	2.02	0.66	0.12	1.24
	0.56	1.95	0.67	0.12	1.16
	0.58	1.88	0.69	0.11	1.07
	0.60	1.82	0.72	0.11	0.99

Table S2: Spin-Hamiltonian Parameters of the Mn ^{IV} /Fe ^{IV} intermediate in Ct RNR- β_2				
Parameter	Fe ^{IV} site	Mn ^{IV} site		
A (MHz)	-54.5, -59.5, -43.5	247, 216, 243		
	(-55.9, -59.3, -40.5)			
δ (mm/s)	0.19 (0.17)	0.19 (0.17)		
$\Delta E_{Q}(\text{mm/s})$	-0.62 (-0.75)	-0.62 (-0.75)		
η	-9 (-10)	-9 (-10)		

Figure S1. Observed first-order rate-constant for Mn^{IV}/Fe^{IV} intermediate formation as a function of ClO_2^- from three independent experiments employing two different concentrations of Cld. The onset of the deviation from the first-order dependence on $[ClO_2^-]$ occurs at a greater value of $[ClO_2^-]$ with the greater [Cld] (10 μ M), suggesting that the deviation is associated with inefficiency or inactivation of the Cld catalyst at high concentrations of ClO_2^- .

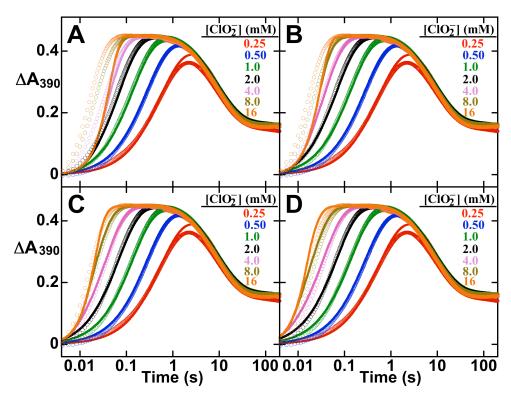
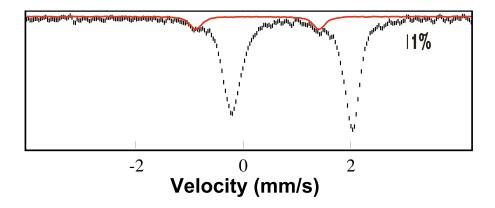



Figure S2. Kinetic simulations to assess the $k_{\rm cat}$ of Cld under the reaction conditions described in Fig. 1B. The simplest two-step kinetic model for Cld, in which ${\rm ClO_2}^-$ binds non-covalently with a $K_{\rm D}$ of 215 $\mu{\rm M}$ [the reported $K_{\rm M}$ of the reaction (1)] and is converted in a single step to free ${\rm O_2}$ and ${\rm Cl}^-$ with a phenomenological rate constant of $k_{\rm cat}$, was assumed, and $k_{\rm cat}$ was varied. Simulated traces with the same range of $[{\rm ClO_2}^-]$ used in Fig. 1B and with $k_{\rm cat}$ values $\leq 60{,}000~{\rm s}^{-1}$ (A and B) give noticeably poor agreement with the data for $[{\rm ClO_2}^-] > 4~{\rm mM}$. An assumed $k_{\rm cat}$ of 120,000 s⁻¹ (C) gives much better agreement between the simulated traces and the data, while a value of 200,000 s⁻¹ (D) is obviously too high. This analysis suggests that the true $k_{\rm cat}$ under these conditions is $\sim 120{,}000~{\rm s}^{-1}$, in agreement with published results (2).

Figure S3. Mössbauer spectrum (4.2 K/53 mT parallel field) of a freeze-quench sample prepared by mixing a solution of 10 mM Fe^{II}–Mb (2.5 mM ⁵⁷Fe-Mb and 7.5 mM ⁵⁶Fe-Mb) with 0.25 equivalent volumes of a solution of 100 mM ClO_2^- and freeze-quenching quenched after 15 ms. The spectrum has a 7 ± 3% contribution from oxy-Mb (shown in red).

REFERENCES

- 1. Streit, B. R., and DuBois, J. L. (2008) Chemical and steady-state kinetic analyses of a heterologously expressed heme dependent chlorite dismutase, *Biochemistry* 47, 5271-5280.
- 2. Streit, B. R., Blanc, B., Lukat-Rodgers, G. S., Rodgers, K. R., and DuBois, J. L. (2010) How Active-Site Protonation State Influences the Reactivity and Ligation of the Heme in Chlorite Dismutase, *J. Am. Chem. Soc.* 132, 5711-5724.