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A Introduction

In this document we provide substantive and technical detail for the manuscript A

two-stage strategy to accommodate general patterns of confounding in the design of ob-

servational studies. Specifically, the remainder of the document is organized as follows

• Section B provides summary information on the infant mortality data described

in Section 2 of the manuscript.

• Section C outlines the inputs required by the simulation-based algorithm, as well

as a simple strategy for specifying the numerical value of β0.

• Section D presents the algorithm.

• Section E provides a simple framework for constructing multivariate distributions

that are composed of mixtures of continuous and categorical covariates

• Section F provides a graphical representation of the sampling distribution of the

estimated power using the proposed two-stage strategy under the set-up explained

in Section 4.2 of the main manuscript.

We note that, to distinguish this document from the main manuscript, we have used

numeric labels for sections and equations in the main paper and alpha-numeric labels

in this document. Finally, we note that the approach for specifying β0, in Section C

and the algorithm of Section D are both implemented in the tpsDesign package for the

statistical programming language R (http://cran.r-project.org/).
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B North Carolina infant mortality data

Table SM-1: Population characteristics of the North Carolina infant mortality data

and results from a multivariate logistic regression analysis of infant mortality. The

former provides marginal information on the joint distribution of the exposure and

six confounders, denoted Pr(X,Z1, . . . , Z6) in the main manuscript; the latter provides

information on the assumed confounder effects of model (C.1) (i.e. {βz1 , . . . , βzp}).

Population characteristics Multivariate
N (%) or median (IQR) logistic regression
Births Deaths OR (95% CI)

Total 225,152 1,752
Race (X)
caucasian 171,714 (76.3%) 986 (56.3%) REF
African-American 53,438 (23.7%) 766 (43.7%) 1.14 (1.02, 1.28)
Gender (Z1)
Female 109,895 (48.8%) 761 (43.4%) REF
Male 115,257 (51.2%) 991 (56.6%) 1.25 (1.12, 1.39)
Mothers age, years (Z2) 27 (22 - 31) 25 (21 - 31) 0.89 (0.85, 0.93)
Smoking during pregnancy (Z3)
No 196,506 (87.3%) 1,382 (78.9%) REF
Yes 28,646 (16.7%) 370 (21.1%) 1.65 (1.44, 1.89)
Weight gained by mother, lbs (Z4) 30 (20 - 40) 18 (10 - 30) 0.86 (0.82, 0.90)
Low birth weight (Z5)
No 205,154 (91.1%) 488 (27.9%) REF
Yes 19,998 (8.9%) 1,264 (72.1%) 2.24 (1.90, 2.64)
Gestation, weeks (Z6) 39 (38 - 40) 28 (23 - 37) 0.27 (0.26, 0.29)

Note, the interpretation of the odds ratios for the three continuous confounders are

for the following contrasts:

Z2 odds ratio is for a 5 year difference in age

Z4 odds ratio is for a 10lb difference in weight

Z6 odds ratio is for a 4 week difference in gestational duration
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C Algorithm inputs

Suppose a case-control study is conducted to estimate the association between a binary

outcome Y and an exposure X, adjusting for a set of p potential confounders Z =

{Z1, . . . , Zp}. Given data collected via the case-control design, the primary analysis

would consist of fitting a logistic regression model of the form:

logit Pr(Y = 1| X,Z) = β0 + βxX +

p
∑

j=1

βzjZj. (C.1)

The simulation-based algorithm of Section D, and used throughout the main manuscript,

requires the following inputs:

(i) βx, the log-odds ratio coefficient for the primary exposure in model (C.1).

(ii) {βz1 , . . . , βzp}, the p log-odds ratio confounder coefficients in model (C.1).

(iii) β0, the intercept in model (C.1), or π̃y = Pr(Y = 1), the overall outcome preva-

lence.

(iv) Pr(X,Z1, . . . , Zp), the joint exposure/confounder distribution in the population

of interest.

(v) n0 and n1, the control and case sample sizes, respectively.

In practice, it will often be easier to elicit the overall outcome prevalence, π̃y, than

the value of the intercept, β0, which corresponds to the outcome prevalence for the

subset of the population with X = Z1 = . . . = Zp = 0. This is particularly problematic

when one changes the structure of the model that underlies the power calculations. For

example, in many settings researchers will vary βx to explore power at various effect
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sizes. Doing so without modifying β0 (holding everything else constant) will lead to

differing induced π̃y in the underlying population across the various scenarios. The

also applies when one varies the confounder coefficients. Hence, for a fixed outcome

prevalence, β0 will need to be re-calculated for each scenario that modifies βx or any

of the βzj . Given π̃y, together with βx, {βz1 , . . . , βzp} and Pr(X,Z1, . . . , Z6), one can

determine the induced value of β0 via

β0 = argminβ0
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where P (Y = 1| X,Z) is given by model (C.1). Practically, the integration can be

replaced by simulating a large dataset from Pr(X,Z1, . . . , Z6) and averaging over the

Pr(Y = 1| X = x,Z = z) (see steps (a) and (b) of the algorithm in Section D).

Specifically, generate a large dataset consisting of {Xi, Z1,i, . . . , Zp,i} for N individuals,

and calculate the corresponding πi=Pr(Yi = 1| Xi, Zi). Noting the latter are a function

β0, via model (C.1), find the value of β0 that minimizes:
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D Simulation-based power algorithm

One fundamental conceptual challenge in the development of sample size/power methods

for case-control studies is that the design is retrospective whereas the model of interest

is typically prospective; that is, exposures/confounders are random, rather than the

outcome. Given the inputs outlined in Section C, the following provides a general-

purpose algorithm for power calculations under the case-control design that overcomes

this challenge:

(a) Construct a large ‘population’ of N individuals with joint exposure/confounder

distribution Pr(X,Z1, . . . , Z6). That is, construct a dataset consisting of {Xi, Zi,1, . . . , Zi,p}

for i = 1, . . . , N .

(b) Given {β0, βx, βz1 , . . . , βzp}, calculate πi = Pr(Yi = 1) for all N individuals using

model (C.1).

(c) For each individual, generate a random draw from a Bernoulli(πi) distribution.

(d) Stratify population according outcome status, to give N1 cases with Y=1 and N0

non-cases with Y=0 (note, N0 +N1 = N).

(e) Sample n0 individuals from the N0 non-cases and n1 from the N1 cases, and

‘record’ their exposure/confounder values.

(f) Fit model (C.1) and record whether or not the null hypothesis (i.e. H0: βx=0) is

rejected.

(g) Repeat steps (c)-(f) R times.
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Power is estimated as the percent of R instances where the null hypothesis is rejected.

Since R is (necessarily) finite, the simulation-based estimate is subject to uncertainty,

often referred to as Monte Carlo Error (MCE). Koehler et al. (2009) describe various

techniques for characterizing MCE and strategies for determining the value of R.

References

Koehler, E., E. Brown, and S. Haneuse (2009). On the assessment of Monte Carlo Error

in simulation-based statistical analyses. The American Statistician 63(2), 155–162.
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E Constructing multivariate distributions for Pr(X,Z1, . . . , Z6)

Stage I of the proposed framework in Section 4 of the manuscript seeks to establish

initial estimates of power under a range of different scenarios for confounding. Sce-

narios for confounding are defined, primarily, in terms of the associations between the

confounder(s) and both the exposure of interest and outcome. The former requires the

specification and construction of Pr(X,Z1, . . . , Z6); the latter requires {βz1 , . . . , βzp}.

While elicitation and specification of Pr(X,Z1, . . . , Z6) and {βz1 , . . . , βzp} (as well as

βx) pose important scientific challenges, constructing Pr(X,Z1, . . . , Z6) such that the

relationships that define the underlying confounding can be pre-specified and preserved

also poses a difficult technical challenge. This is particularly the case as (X,Z1, . . . , Zp)

is multivariate and may consist of a mixture of continuous and categorical covariates

(as in Table SM-1 above).

As a simple way forward, we exploit the multivariate Normal distribution and gen-

erate data from the following joint exposure/confounder distribution:
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Suppose the primary exposure of interest is binary (as with the race indicator for

the infant mortality example), while the p confounders are all taken to be continuous.

Given Σ, generating random deviates from (E.1) is straightforward in most statistical

packages. One can generate binary exposure with a pre-specified marginal prevalence
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by dichotomizing the continuous random deviate at the appropriate quantile of the Nor-

mal(0, σ2
x) distribution. Further, one can specify the off-diagonals of Σ to ensure some

desired odds ratio association between the binary exposure and each of the confounders.

To do this we note that the induced odds ratio is given by:

φxz =
π11π00

π01π10

where, for example,

π11 =

∞
∫

q1−τx

∞
∫

q1−τz

fX,Z(x, z) ∂x∂z,

τx and τz are the marginal prevalences of X and Z, respectively, and fX,Z(·, ·) is the

MVN density.
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F Operating characteristics for the two-stage design

Figure SM-1: Boxplots of the distribution of estimated power to detect θx=1.3, based

on a case-control design with n0=n1=2,500 and using the fully adjusted model for the

infant mortality example, using information on Pr(X,Z1, . . . , Z6) and {βz1 , . . . , βz6}

obtained via internal pilot data with m=250, 500 and 1,000.
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