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1. APPENDIX A: DETAILS OF THE SPATIAL HIERARCHICAL MODEL AND MCMC STRATEGY

For f(X0(s), X1(s)|Z(s)), we propose the following spatial hierarchical model for potential air-pollution

concentrations:

X(s) = ZT (s)β +W (s) + ε(s), (1.1)

where X(s) = (XT
0 (s), XT

1 (s))T is the 2q−dimensional vector of potential pollution concentrations (q

pollutants under each of two regulations), W (s) is a vector of spatially-varying random intercepts, and

ε(s) represents nonspatial “nugget” error (e.g., measurement error). ZT (s) is a 2q × p matrix of time-

invariant covariates, where p = Σkpk and pk is the number of covariates pertaining to the kth pollutant at

location s (including an intercept). The vector β represents regression coefficients relating air pollution to

differences in covariates.

The spatial correlation structure follows from specifying W (s) as a realization from a multivariate

Gaussian Process (MVGP) with cross-covariance functionK(si, sj ; ν) being the 2q×2q matrix of covari-
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ances between the 2q potential pollution concentrations measured at locations si and sj . The parameter

ν = (ν1, . . . ν2q) is included because we model the cross covariances as functions of ν that represent the

spatial decay of correlations between pollution measurements across space.

When q = 2,K(si, sj ; ν) is a 4×4 matrix where, for example, [K(si, sj ; ν)]1,1 denotes the covariance

between PM10 under A = 0 at location si and PM10 under A = 0 at location sj , and [K(si, sj ; ν)]2,3

denotes the covariance between O3 under A = 0 at location si and PM10 under A = 1 at location sj .

Note that when i = j, K(si, sj ; ν) = K(s, s) is in fact a covariance matrix characterizing the relation-

ships among the 2q potential pollution concentrations within a a location.

For this model, W = [W (si)]
n
i=1 ∼ MVN(0,ΣW ), where ΣW is a 2qn × 2qn covariance matrix

with (i, j)th block equal to the cross covariance between locations si and sj , ΣW = [K(si, sj)]
n
i,j=1. We

assume independent nugget errors, with ε(s) ∼MVN(0,Ψ), and Ψ diagonal.

The mechanics of model (2.3) rely on two key features: the relationship among the 2q potential pollu-

tion concentrations within a location, and the decay of their correlations across space. For the relationship

among pollutants within a location, note that the cross covariance within a location, K(s, s), is in fact a

covariance matrix of the 2q random effects corresponding to pollution measurements at a common site.

We writeK(s, s) = LLT , where L is the lower-triangular Cholesky square root of this covariance matrix,

and assume that K(s, s) is the same for all s, that is, that the process is stationary.

For the spatial decay, we define a simpler MVGP, W̃ (s), such that V ar(W̃k(s)) = 1 and the cross

covariance is diagonal: K̃(si, sj ; ν) = diag{ρk(si, sj ; νk)}, where ρk(si, sj ; νk) represents a function for

the spatial decay of the correlation between the kth element of W̃ (s) across space. We assume isotropic

exponential covariance functions that depend only on the Euclidean distance between locations si and sj

(||si− sj ||), with ρk(si, sj) = e−νk||si−sj ||. The covariance matrix of W̃ = [W̃ (si)]
n
i=1 can be written as

ΣW̃ = [K̃(si, sj)]
n
i,j=1.

Rather than model K(si, sj ; ν) directly, we separately specify K̃(si, sj ; ν) and LLT , and define

W (s) = LW̃ (s), which implies that the spatial random effects in (2.3) are a linear transformation of
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the simpler MVGP, with transformation defined by the relationships among the pollutants. With this spec-

ification, K(si, sj ; ν) = LK̃(si, sj ; ν)LT .

Let XT = [(X0(si)
T , X1(si)

T )]ni=1 be the 2qn× 1 pollution vector and Z be the 2qn× p matrix of

regressors. The above model can, after marginalization over W̃ , be equivalently stated as

X ∼MVN(Zβ,LΣW̃L
T + In ⊗Ψ) (1.2)

where L = In ⊗ L, and ⊗ is the Kronecker product. Details for this model formulation as well as

generalizations can be found in Wackernagel (2003), Finley and others (2007), and Banerjee and others.

(2008).

For the MCMC, K(s, s) is updated via updates of La, which are the lower-triangular Cholesky roots

of the q× q diagonal blocks of K(s, s) that are informed by the observed data. The off-diagonal blocks of

K(s, s) are updated according to the pre-specified value of ω and the values of La, subject to a positive-

definiteness constraint. Under our prior specification (detailed below), the posterior distribution for β is

multivariate normal, with samples drawn using a fully-conditional Gibbs step. All other parameters and

missing data are updated with a Metropolis step using normal proposal distributions, with appropriate

transformations for all variables having restricted support. Each diagonal element of Ψ, each ν, and each

missing quantity are updated individually, with block updating carried out for β, α0 = (α0
0, α

0
1, α

0
2),

α1 = (α1
0, α

1
1, α

1
2), and (L0, L1). Proposal variances for each parameter and for the missing quantities

are tuned during an adaptive “pre-burn-in” stage, after which proposal variances are fixed and the chain is

run for 20,000 iterations. After discarding the first 1,000 iterations as burn in, inference is based on every

20th posterior sample.

As pointed out in Finley and others (2007), values of ν are only weakly identifiable and require reason-

ably informative priors for satisfactory MCMC behavior, but the model decomposition described above

entails adequate structure to identify ΣW̃ , L,ΣW , and Ψ. We treat the parameters β,Ψ, L0, L1, ν, α
0, and

α1, as a priori independent. We specify flat priors for β, α0 and α1. For the diagonal elements of Ψ, we

specify independent inverse-gamma distributions with shape parameters set to 3.0 and scale parameters set
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to 0.12 for both PM10 and O3 . For νk, we specify uniform prior distributions on the interval (1.0, 6.0)

for both PM10 and O3 . Parameters for the prior distributions of Ψ and ν are meant to reflect diffuse

prior information within the range of plausible parameter values. For each 2 × 2 block on the diagonal

of K(s, s), we specify an inverse-Wishart prior distribution with 3 degrees of freedom and scale matrix

equal to the covariance structure of PM10 and O3 observed among regulated and unregulated areas with

co-located monitors.

2. APPENDIX B: ILLUSTRATION USING SIMULATED DATA

To illustrate that our method can distinguish between settings where a regulation effect on health is and

is not associated with effects on pollution, we simulate data reflecting two scenarios: Scenario A where

the regulation improves health the most when it also improves air pollution (high associative effect rela-

tive to dissociative effect) and Scenario B where the regulation improves health through other pathways

(associative effect ≈ dissociative effect). Monitor locations, number of Medicare beneficiaries living at

each location, and baseline covariates (Z(s)) were those from the observed data used in the analysis of

the CAAA.

For both scenarios, we simulate X(s) = (x1(s), x2(s), x3(s), x4(s)) from:

X(s) = ZT (s)β +W (s) + ε(s), (2.3)

where (x1, x2) represent, respectively, the logarithm of potential PM10 , O3 concentrations under no

regulation (A = 0) and (x3, x4) represent the logarithm of PM10 , O3 in the presence of regulation

(A = 1). The values of β were set to maximum likelihood estimates from simple linear regressions of ac-

tual CAAA post-regulation pollution concentrations on Z(s). We used the following covariance matrices

for (x1(s), x2(s), x3(s), x4(s)) to simulate the pollution data:

K(s, s) =

(
0.059 0.024 0.035 0.014
0.024 0.031 0.014 0.019
0.035 0.014 0.059 0.024
0.014 0.019 0.024 0.031

)
,Ψ =

(
0.034 0 0 0

0 0.016 0 0
0 0 0.034 0
0 0 0 0.016

)
, (2.4)

and set ν = (3, 3, 3, 3). This specification implies a value of ω = 0.6, which we assume known for
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illustrative purposes. To simulate a causal effect of the regulation on pollution, we reduced the potential

regulated pollution concentrations (x3, x4) by one quarter of one standard deviation, that is, we set xk =

xk − 0.25σk for k = 3, 4, where σk is the standard deviation of the kth simulated pollutant.

We simulated mortality outcomes from Poisson distributions with means determined by the following

log-linear models:

log(E[Ya(s)]) = αa
0 + ZT (s)αa

1 +Xa(s)αa
2 + log(N(s)). (2.5)

To obtain values of α parameters for the simulation, we fit a Poisson regression predicting actual

CAAA deaths in unregulated areas from Z(s). We set covariate relative risks under both regulation pro-

grams (α0
1, α

1
1) to maximum likelihood estimates from this Poisson regression. The intercept parameters

(αa
0) and relative risk parameters associated with post-regulation pollution (αa

2) are varied in Scenarios

A and B. The values used for each simulated scenario appear in Table 1. Note that for Scenario A, the

relative risks associated with PM10 are stronger than those associated with O3 , reflecting a scenario

where causal effects on PM10 have a larger impact on mortality than equally-sized causal effects on O3 .

Table 1. Values of αa
0 and αa

2 (a = 0, 1) for the two simulated scenarios.
Scenario A Scenario B

(high assoc., low dissoc.) (assoc. ≈ dissoc.)
Parameter a = 0 a = 1 a = 0 a = 1
αa
0 Intercept -5.72 -5.74 -5.47 -5.50
αa
2 log( PM10 RR) 0.14 0.14 0.005 0.005
αa
2 log( O3 RR) 0.05 0.05 0.005 0.005

2.1 Simulation Results

The overall causal effects of the regulation on mortality were similar in the two simulated scenarios. For

Scenario A, the estimated overall average causal effect of the regulated program (adjusted for Z(s) using

a Poisson regression model without post-regulation pollution) was 1.68 fewer mortalities per 1,000 Medi-

care beneficiaries (posterior mean (sd) deaths/1,000: 63.59(0.29) vs. 65.27 (0.34)). For Scenario B, the
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analogous estimated overall average causal effect of the regulated program was 1.31 fewer mortalities per

1,000 Medicare beneficiaries (posterior mean (sd) deaths/1,000: 62.19 (0.29) vs. 63.50 (0.33)). However,

our proposed methodology to estimate associative and dissociative effects yields very different results in

the two scenarios.

The h(x,y), CDK , and CAK used for EDEK and EAEK were as in the main text. Figures 1 and 2,

examine estimated causal effects on mortality as a function of estimated causal effects on air quality. As

in the main text, the shaded region represents a causal effect on air pollution below the threshold CDK , and

the area below the shaded region represents a causal effect on pollution in excess of the threshold CAK .

In Figure 1 for Scenario A, note that for PM10 , mortality is estimated to decrease for almost all values

of [X0(s)]K, [X1(s)]K, but that the decreases below the shaded area tend to be larger than the decreases

within the shaded area. This is evidence of a larger associative effect than dissociative effect. Notice that

this pattern is much less apparent for O3 .

In contrast, note that for Scenario B (Figure 2), decreases in mortality are distributed more evenly

around shaded region for both PM10 and O3 , suggesting that decreases in mortality tend to be the same

regardless of changes in pollution.

Figures 3 presents posterior distributions of EDEK and EAEK under Scenarios A and B, for K = {

PM10 }, { O3 }, and { PM10 , O3 }. EDEK and EAEK are estimated to be negative for all K and in

both scenarios, reflecting a regulation-induced decrease in mortality. For Scenario A, estimates of EAEK

always indicate more pronounced mortality decreases than estimates of EDEK. In contrast, for Scenario

B, estimates of EAEK and EDEK are always estimated to be similar. Note that, the contrast between

Scenarios A and B is most stark for K = { PM10 } and K = { PM10 , O3 }, and that the largest mortality

decrease is estimated in Scenario A when the regulation causally affects both PM10 and O3 .
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3. APPENDIX C: POSTERIOR SUMMARIES OF ALL PARAMETERS IN MODELS FOR THE CAAA

Figures 4 – 12 summarize posterior distributions of all model parameters from our analysis of the CAAA.

In these figures, solid squares represent posterior medians, open circles represent posterior means, and

error bars are 95% posterior intervals.

4. APPENDIX D: ASSESSMENT OF AGIA

For ω = 0.0, 0.3, 0.6, and 0.9, posterior mean estimates of ν for PM10 were 3.46, 3.48, 3.32, and

3.13, and for O3 were 3.01, 3.01, 2.68, and 3.42, respectively. To investigate violations of AGIA we

determine, for each location, the distance to the nearest location in the opposite regulation group. Denote

this distance with ds. For each pollutant, Figure 13 presents a histogram of e−ν̂kds , representing the

estimated correlation between concentrations of the kth pollutant measured at locations ds apart, where

ν̂k is 3.13 for PM10 and 2.68 for O3 (the lowest posterior mean estimates across all values of ω). For

PM10 ( O3 ), 111 (127) regulated and 67 (79) unregulated locations lie within distances implying estimated

correlations> 0.05, and 17 (31) regulated and 13 (23) unregulated locations lie within distances implying

estimated correlations > 0.25. Thus, AGIA appears violated for many locations, but relatively few of

these locations exhibit correlations greater than 0.25.

AGIA implies that potential outcomes for locations inRaobs

are the same under A = aobs and A = 1

and that potential outcomes for locations in Uaobs

are the same under A = aobs and A = 0. However,

estimates of ν suggest a violation of this assumption for some locations. Rather than being the same (as

under AGIA), we argue that pollution under the hypothetical program A = 1 would likely be lower than

that observed in Raobs

, because adding regulations to nearby areas should decrease overall pollution.

Similarly, we argue that pollution under the hypothetical program A = 0 would likely be higher than that

observed in Uaobs

, because removing regulations from nearby areas should increase overall pollution. If

all other model assumptions held, this would lead pollution estimates in our analysis to be overestimates

of potential pollution under A = 1 and underestimates of potential pollution under A = 0. Thus, it is
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feasible that, assuming all other modeling assumptions hold, a violation of AGIA leads to estimates of the

causal effect of A = 1 vs. A = 0 that are conservatively approximate in that they underestimate the true

causal effect.

5. APPENDIX E: MISSING DATA IN THE ANALYSIS OF CAAA

5.1 Missing outcome data

In practice, we are confronted with two types of missing outcome data. First, we have the missing post-

regulation potential outcomes in 1999-2001, that is, the potential pollution levels and mortality counts

under the regulation program that would imply the opposite designation of that which was observed. Sec-

ond, we have missing pollution outcomes in 1999-2001 for locations where not all of the q pollutants are

measured, which we assume to be missing at random. In our analysis of the CAAA, co-located monitors

for both PM10 and O3 were present in 108 locations during 1999-2001, but air pollution concentrations

were missing for 135 locations having monitors only for PM10 , 70 locations having monitors only for

O3 , and 49 locations having no monitor for either pollutant during this period. For the MCMC, both types

of missing outcome data are treated the same and are sampled at each iteration conditional on observed

data, current values for parameters, and imputed values for other missing outcomes.

5.2 Missing covariate data

A distinct type of missing data in our application is the missing pre-regulation PM10 and O3 concentra-

tions during 1987-1989, which are considered covariates in our analysis. This issue arises because monitor

locations in the EPA monitoring network are not static over time, and there are many monitor locations

in operation during 1999-2001 that were not in operation during the pre-regulation period. The issue of

missing covariates is different from the issue of missing outcomes. If observations were to have both

missing covariates and missing outcomes, then there would be limited information with which to ground

imputations for these quantities absent any model for the covariates. This is particularly problematic in
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our case because every observation has missing outcomes (unobserved potential outcomes).

Rather than exclude observations with missing pre-regulation pollution, we employ an additional spa-

tial model to impute the missing pre-regulation pollution and use these imputations in our analysis of the

CAAA. Specifically, we fit the same type of hierarchical model as detailed in Appendix A, with the out-

come specified as the 2-dimensional vector consisting of log-transformed PM10 and O3 during the years

1987-1989. Because this imputation model is not designed to evaluate causal effects, it does not entail the

complications of potential outcomes and nonidentifiable associations. Covariates included in this model

were the same as those in the model of the main text (See Table 1 of the main text), with the addition

of a covariate denoting whether a location lies in an attainment or nonattainment area. In total, 179 pre-

regulation PM10 and 228 pre-regulation O3 values were imputed using posterior-predictive means from

this model and treated as fixed covariates in the final analysis of the CAAA.

To assess the predictive ability of our baseline imputation model, we re-fit the imputation model to a

data set that withheld 100 known baseline pollution values (50 PM10 and 50 O3 ) selected at random.

Figure 14 plots the true known values of these 100 pollution concentrations against predicted values from

the baseline imputation model. We see that the baseline model produces reasonable predictions for these

pre-regulation pollution values. While our final analysis of the CAAA does not reflect uncertainty in these

imputations, the out-of-sample prediction ability displayed in Figure 14 suggests that our imputations are

not likely to introduce substantial bias.

To further investigate the possible implications of imputing missing pre-regulation pollution values,

Figure 15 redisplays box plots of posterior distributions of EDEK and EAEK (same as those in Figure

4 of the main text), overlaid with the same quantities calculated using only locations without imputed

baseline data. That is, we used the same model fit to the entire data set (with imputed baseline values) to

obtain posterior distributions of potential outcomes for all locations, but calculated EDEK and EAEK

using only posterior samples for locations that had completely observed baseline pollution. For all K, we

see more variability when using only observations with completely observed baseline pollution. In Figure
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15(a), estimates for K = { PM10 } using only locations with completely observed baseline pollution are

largely consistent with estimates using all locations. For K = { O3 } in Figure 15(b) we see that using

only locations with completely observed baseline pollution suggests more pronounced health effects than

estimates using all locations. A similar pattern is seen in Figure 15(c).

6. APPENDIX F: SENSITIVITY TO THE CHOICE OF CDK AND CAK

As defined in the main text, EAEK represents the average causal regulation effect on mortality among

locations where the regulation causally decreases pollution by at least CAK , andEDEK represents average

causal effects on mortality among locations where the regulation effect on pollution is less than CDK . That

is, these threshold values distinguish locations that exhibit a “meaningful” decrease in pollution from areas

where pollution was not meaningfully affected. One benefit of our approach is that estimates of EDEK

and EAEK can be obtained using different threshold values of CDK and CAK without re-fitting the model.

This is because posterior samples of the missing potential outcomes involved in the definition of EDEK

and EAEK do not depend on the choice of CDK and CAK . Thus, posterior samples of missing potential

outcomes can be obtained from fitting the model once, and these posterior samples can be used to calculate

average causal effects in any combination of principal strata. Figures 16, 17, and 18 display posterior

boxplots EDEK and EAEK calculated using two different sets of threshold values CDK and CAK : one set

entailing a more lenient definition of “meaningful” causal effect on pollution (CDK = CAK = 2, 0.0025

for PM10 , O3 ) and one entailing a more stringent definition of “meaningful” causal effect on pollution

(CDK = CAK = 8, 0.01 for PM10 , O3 ). We see that qualitative conclusions regarding the relative

magnitudes of associative and dissociative effects do not change with different values of CDK and CAK ,

but that uncertainty regarding EDEK and EAEK depends on these thresholds. This is to be expected,

because the threshold values determine how many locations contribute to estimates ofEDEK andEAEK.

For example, with more stringent definitions of meaningful causal effects (CDK = CAK = 8, 0.01 for PM10

, O3 ), more locations are estimated to have no meaningful causal effect, and EDEK is estimated with
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more precision.

Note that definitions of EDEK and EAEK need not rely on principal strata specified by differences

(or absolute values of differences) between [X0(s)]K and [X1(s)]K. Our formulations are one specific

instance of more general formulations that rely on a (possibly vector-valued) contrast function h(w,v),

where h(w,w) = 0, and 0 denotes a vector with every element equal to 0. For example, h(w,v) could

denote the Euclidean distance between multivariate pollution vectors. EDEK and EAEK could then be

defined as:

EAEK = E[Y r1 (s)− Y r0 (s)|h([X0(s)]K, [X1(s)]K) > CAK ] (6.6)

EDEK = E[Y r1 (s)− Y r0 (s)|h([X0(s)]K, [X1(s)]K) < CDK ]. (6.7)
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Fig. 1. Detailed depiction of the causal effect surface forK = PM10 andK = O3 for simulated Scenario A with large
associative effects relative to dissociative effects. Values of Xa(s) represent observed or posterior predictive mean
values. Size and plotting symbol of point indicates the posterior mean causal effect on mortality for that location.
Points in shaded area represent areas with [X0(s)]K − [X1(s)]K < CDK .
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Fig. 2. Detailed depiction of the causal effect surface forK = P andK = 0 for simulated Scenario B with associative
effects ≈ dissociative effects. Values of Xa(s) represent observed or posterior predictive mean values. Size and
plotting symbol of point indicates the posterior mean causal effect on mortality for that location. Points in shaded
area represent areas with [X0(s)]K − [X1(s)]K < CDK .
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Fig. 3. Posterior summaries of EDEK and EAEK for Scenarios A and B.
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Fig. 4. Posterior distributions for K(s, s).
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16 C.M. ZIGLER AND OTHERS

Fig. 5. Posterior distributions for Ψ.
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Fig. 6. Posterior distributions for ν.
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18 C.M. ZIGLER AND OTHERS

Fig. 7. Posterior distributions for β for PM10 under A = 0.
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Fig. 8. Posterior distributions for β for O3 under A = 0.
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Fig. 9. Posterior distributions for β for PM10 under A = 1.
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Fig. 10. Posterior distributions for β for O3 under A = 0.

19
87

−1
98

9 
PM

19
87

−1
98

9 
O
3

%
 w

hi
te

%
 b
la
ck

%
 h
isp

ag
e

lo
g(

po
pu

la
tio

n)

m
ed

ia
n 
in
co

m
e

%
 H

S g
ra

d

%
 u
rb

an

%
 s
m
ok

e

%
 fe

m
al
e

%
 5
yr
 m

ig
ra

te

%
 u
rb

an
*lo

g(
po

p)

19
87

−1
98

9 
PM

19
87

−1
98

9 
O
3

%
 w

hi
te

%
 b
la
ck

%
 h
isp

ag
e

lo
g(

po
pu

la
tio

n)

m
ed

ia
n 
in
co

m
e

%
 H

S g
ra

d

%
 u
rb

an

%
 s
m
ok

e

%
 fe

m
al
e

%
 5
yr
 m

ig
ra

te

%
 u
rb

an
*lo

g(
po

p)

19
87

−1
98

9 
PM

19
87

−1
98

9 
O
3

%
 w

hi
te

%
 b
la
ck

%
 h
isp

ag
e

lo
g(

po
pu

la
tio

n)

m
ed

ia
n 
in
co

m
e

%
 H

S g
ra

d

%
 u
rb

an

%
 s
m
ok

e

%
 fe

m
al
e

%
 5
yr
 m

ig
ra

te

%
 u
rb

an
*lo

g(
po

p)

19
87

−1
98

9 
PM

19
87

−1
98

9 
O
3

%
 w

hi
te

%
 b
la
ck

%
 h
isp

ag
e

lo
g(

po
pu

la
tio

n)

m
ed

ia
n 
in
co

m
e

%
 H

S g
ra

d

%
 u
rb

an

%
 s
m
ok

e

%
 fe

m
al
e

%
 5
yr
 m

ig
ra

te

%
 u
rb

an
*lo

g(
po

p)

0 0.
3

0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9 0 0.

3
0.
6

0.
9ω=

−
6

.6
4

3
.5

2
8

.6
0

1
3

.6
8

2
3

.8
3

3
3

.9
9

● ●
●

●

●

●

●

● ●

●

●
●

●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●



22 C.M. ZIGLER AND OTHERS

Fig. 11. Posterior distributions for α0.
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Fig. 12. Posterior distributions for α1.
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Fig. 13. Histograms of the correlation (e−ν̂kds ) of pollution concentrations for each location and the nearest location
with opposite observed regulation (ds). Values of ν̂k are the minimum posterior mean value for each pollutant across
all values of the sensitivity parameter, ω.
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Fig. 14. True baseline pollution concentration vs. posterior-predictive mean pollution concentration from the baseline
imputation model fit to a data set that withheld 100 known pollution values during 1987-1989.
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Fig. 15. Posterior summaries of EDEK and EAEK. Shaded box plots use all locations, hollow box plots use only
observations with observed baseline pollution.
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Fig. 16. Posterior summaries of EDEK and EAEK for different values of CDK and CAK . K = { PM10 }.
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Fig. 17. Posterior summaries of EDEK and EAEK for different values of CDK and CAK . K = { O3 }.
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Fig. 18. Posterior summaries of EDEK and EAEK for different values of CDK and CAK . K = { PM10 , O3 }.

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●
●●

●

●●●

●

●
●

●

●
●● ●

●

●

●

●

●●D
ea

th
s/

10
00

EDE EAE

−
10

−
6

−
2

2
6

10

ω=0 ω=0.3 ω=0.6 ω=0.9 ω=0 ω=0.3 ω=0.6 ω=0.9

(a) CDK = {2, 0.0025}, CAK = {2, 0.0025}

●●●●

●

●●●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

D
ea

th
s/

10
00

EDE EAE

−
10

−
6

−
2

2
6

10

ω=0 ω=0.3 ω=0.6 ω=0.9 ω=0 ω=0.3 ω=0.6 ω=0.9

(b) CDK = {8, 0.01}, CAK = {8, 0.01}


	Appendix A: Details of the Spatial Hierarchical Model and MCMC Strategy
	Appendix B: Illustration Using Simulated Data
	Simulation Results

	Appendix C: Posterior Summaries of All Parameters in Models for the CAAA
	Appendix D: Assessment of AGIA
	Appendix E: Missing data in the analysis of CAAA
	Missing outcome data
	Missing covariate data

	Appendix F: Sensitivity to the Choice of CDK and CAK

