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Automated myocyte segmentation  

The algorithm for automated myocyte segmentation is composed of 6 main phases, which 
are outlined in Figure 1. In the first phase (Figure 1-1), the algorithm loads images of nuclei 
(stained using DAPI) and α-actinin, a myocyte-specific cytoskeletal protein. A median filter with 
an appropriately sized window (4 pixels in the experiments presented here) is applied to the α-
actinin channel to improve cell segmentation performance, and then all images are background-
subtracted using a manual threshold. In the second phase (Figure 1-2), nuclei are identified and 
segmented using an Otsu threshold in the DAPI channel.  

The Otsu threshold [10] is used to classify pixels as either objects or background using 
the global properties of the image histogram without operator input. Ideally, the object and 
background pixels would show up as two distinct peaks on the image histogram with a clear 
valley in between separating these two categories, making threshold selection intuitive. 
However, in real images the separation point between these two peaks is often muddled by noise. 
The Otsu threshold is the grey level in an intensity histogram that maximizes the variance 
between background and foreground pixels, which is also the threshold that minimizes the intra-
class variance of background and foreground pixels. In the Otsu algorithm, first the image 
histogram is computed. Then the probabilities (ω) of a pixel being in each category (background 
or object) and the corresponding mean grey level of each category (µ) for every possible 
threshold value are calculated. Using these values, the inter-class variance is calculated at each 
possible threshold value using the following formula:   

 
σ2(t) = ωbg(t) ωobj(t)[µbg(t)-µobj(t)]
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The optimal threshold is then set as the threshold at which σ2(t) is maximized [10]. 

Next, the minor population of cardiac fibroblasts and other nonmyocytes is removed by 
filtering out nuclei that do not contain nuclear α-actinin signal (Figure 1-3). Some neonatal 
cardiac myocytes are binucleated, which causes difficulty for our nucleus-based cell 
segmentation. Therefore, in the fourth phase adjacent nuclei in the same cell are merged (Figure 
1-4). Myocyte nuclei are dilated by a suitable margin width (3 pixels in this case), re-identified, 
and then eroded by the same margin width to restore their original size. 

In the fifth phase (Figure 1-5), cardiac myocyte cell boundaries are segmented and 
identified. First, cell-background pixel discrimination is conducted based on an Otsu threshold, 
as previously described. Since many of the cell boundaries are adjacent to one another, additional 
steps must be taken to segment adjacent myocytes. Then cell-cell boundary segmentation is 
performed using a previously validated nuclear propagation approach, in which the nucleus of 
each cell is used as the initial seed and then the algorithm propagates the cell boundary outward 
[2]. The final boundary between adjacent cells is determined based on an equation using the 
difference in grey level intensity in the α-actinin channel between adjacent pixels and distance 
from the nucleus.  This segmentation equation approximates the Voronoi segmentation (pixels 
are assigned to the nearest seed) with an added term accounting for the difference in grey level 
intensity between adjacent pixels. As a result, the calculated inter-pixel distance is larger in 
regions of the image with larger gradients in intensity between adjacent pixels. In other words, 
adjacent pixels with similar intensities are treated as closer together than adjacent pixels with 



large differences in grey level intensity. This algorithm is therefore based on the assumption that 
cell-cell boundaries typically align with large pixel intensity gradients.  

 In the final phase (Figure 1-6), myocytes touching the edge of the image are removed. 
This is performed by creating a 1-pixel wide image border and then identifying myocytes that 
overlap with the border. Nuclei of myocytes touching the image edge are also removed at this 
stage. Once myocyte segmentation is complete, these objects can be used for subsequent shape 
and intensity-based measurements. 

The automated cell segmentation algorithm was implemented using the open-source 
MATLAB-based CellProfiler software package [12]. Detailed steps of the CellProfiler pipeline 
are provided in Table S1. The algorithm and example raw image data from this manuscript are 
freely available for download at http://bme.virginia.edu/saucerman/. 

 
Texture analysis to automatically quantify sarcomeric organization 
 

We sought to develop a robust quantitative measure of sarcomeric organization using 
image texture analysis. Several measures of α-actinin image texture available in CellProfiler 
were tested, including Uniformity, Correlation, Contrast , and Fourier transforms [14]. Haralick 
[ref 14] is the classic reference for image texture analysis, and these concepts are adapted from 
his paper. The starting point for texture analysis is the computation of the gray-level co-
occurrence matrix from the pixels in a particular segmented cell. The gray-level co-occurrence 
matrix quantifies the probability that neighboring pixels will have particular gray scale intensity 
values, and it is computed from the equation: 
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where n and m are the dimensions of the image I, and i and j are two particular gray-level values. 
In MATLAB, the gray-level co-occurrence matrix can be computed using the command 
“graycomatrix”.  
 Using a normalized version of the gray-level co-occurrence matrix P, there are several 
ways to quantify various aspects of the image texture. Texture metrics used in this study are 
Uniformity (closely related to Energy, where Energy = Uniformity0.5), Contrast, and Correlation 
which are given be the following equations from Haralick [14]: 
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Uniformity quantifies the sum of squares of the co-occurrence matrix, providing an overall 
measure of the homogeneity of intensities within that segmented cell. Contrast quantifies the 
degree of difference in pixel intensity from neighboring pixels. Correlation quantifies the linear 
correlation of a pixel’s intensity with its neighbors. As can be seen in Supplementary Figure 4, 
all three texture measures were correlated with manual scores of sarcomeric organization. 

 
 
 



 
Cluster analysis to identify phenotypic signatures and correlations between phenotypic metrics 
 

Hierarchical cluster analysis was used to identify correlations between hypertrophic 
agonists and between phenotypic metrics.  Briefly, hierarchical clustering aims to identify groups 
or clusters of related data. A key step in cluster analysis is the selection of an appropriate 
distance metric to calculate the relatedness of a pair of data. Two distance metrics were used here 
to compute the distance between two vectors x and y: 
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Cluster analysis was performed using the MATLAB algorithm “clustergram”. 


