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A Supplementary Text

A.1. Detailed derivation of uncertainty propagation analysis.

The probability of sampling x mutant molecules from a well-mixed homogenate into a PCR well

can be described using Poisson distribution:
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where A is the mean number of mutant templates per well. Thus, the probability of sampling zero

mutant template into an PCR well, pg is simply:
pO = I)Poisson ('x = 0) = e_l (2)

Thus, the unknown parameter A can be estimated from the fraction of wells that are observed to

be un-amplified in a given PCR trial as:
A=—logp, (3)

where p, =n,/n,,, and no and Nues are the number of unamplified and total wells used in the

wells
trial, respectively. Since only a small number of ny.y;s is practical, and given that there are but two
possible outcomes associated with each PCR wells (either the well is amplified due to the
presence of DNA template or the well remains unamplified), the number ng follows a Binomial
distribution with a probability given by:
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From the properties of Binomial distribution, we know that the random number ng has a mean of

n,.p,and a variance of n , p,(1-p,), which translate to a mean and variance of

D, (observed) of po (actual) and p, (1- p, )/nwdls ,respectively.

The uncertainty analysis of A relies on a first order linear approximation, in which the

variance of any function of random variables, y=g(x) is approximated from a Taylor Series

Expansion (TSE) about the estimator for the mean of the random variables x, given by

X=X

V()= 2%
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where % is an unbiased estimator of the mean of x. Since p, is an unbiased estimate for po, the

A

uncertainty in the estimate A or V():)can be obtained as a function of the uncertainty in p,

according to:
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The coefficient of variation (CV) for the above function thus becomes
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The CV from the linearized analysis above has a minimum inflection at about p, = 0.2, which is in

agreement with the Monte Carlo simulations below (Supplementary Fig. 1A and Figure. 2A in the

main text).

The mutation frequency estimate 0 (mutant per base pair) can then be calculated from y)

according to:

A

o A (8)
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where nmipna is the total number of mtDNA in a single PCR well and ny, is the length DNA

template in consideration (in base pairs; e.g., ny, = 4 for Tagl recognition site (7)).



A.2. Pseudo-codes for Monte Carlo Simulations
A.2.1. Pseudo-code for the sampling protocol in the original RMC assay

Steps Algorithm

1 Initialization

set the number of PCR wells n_

set frequencies of false positive(« ) and false negatives( ) errors

seed random number generators (both uniform and non-uniform)

set template copy number n,_ . .

set the iteration counterto £k = 0

2 lterations
while k£ <10000(7,,)

initialize the counter for amplified wells i, = 0
set counter for number of wells per PCR plate n =1

while n<n

wells

generate a Uniform random number U(0,1): 7
generate a Binomial or Poisson (depending on
the case) random number B(n,60) or P(1)= R

if R#0, then:
if »> /3, then:

i,=i,+1
else
if »r <o, then:

i,=i,+1
increment n+1
calculate the estimate of mutation frequency
h=—to
Mg XMy

increment &k +1




A.1.2. Pseudo-code for the sampling protocol in the optimized RMC assay

Steps Algorithm

1 Initialization
set the number of PCR wells n

wells

set frequencies of false positive(« ) and false negatives( ) errors

seed random number generators (both uniform and non-uniform)

set mean fraction of unamplified well(po)
If using Binomial case, set number of mtDNA in a PCR well (nnpna)
set the iteration counterto £k = 0
2 lteration
while £ <10000(Z,,)

set the counter for unamplified wells 7, = 0

set counter for number of wells per PCR plate n =1

while n<n

wells

generate a Uniform random number U(0,1):7
generate a Binomial or Poisson (depending on
the case) random number B(n,6) or P(1)= R

if R=0, then:

if >« , then:
Iy =1, +1

else

if »< /3, then:

Iy =1, +1

increment n+1
Ly
n

calculate the fraction of unamplified wells p, =

wells
calculate the estimate of mutation frequency 0
increment k+1




A.3. Simulation Methodology

Following our mtDNA point mutation model (26), the in silico model developed in this work,
tracks for mtDNA mutation accumulation during two stages: developmental and postnatal (Figure
TXT1). The model comprises of tracking the wild-type mtDNA (W) and mtDNA deletion (M) in
each cardiomyocytes of the mouse heart tissue (25x10°cells). Each mutant mtDNA molecule is
assumed to contain only a single mutation in the Tagl recognition site (TCGA), consistent with the
RMC experimental design (7). The probability of finding two or more mutations at the same site is
negligible (3). In the subsequent section, details of the stochastic model used in this work for the

CME representation of mitochondrial turnover process will be discussed.
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Figure TXT1: Stochastic model of mtDNA turnover process in mouse heart tissue. The in silico mouse model
simulates the point mutation load of mtDNA in all the cells of mouse heart tissue during development and
postnatal stages.



A.3.1. Cell-level modeling details

Based on experimental evidence, each mitochondrion is assumed to contain 10 mtDNA organized
into assemblies called nucleoids (28,29). The model simulates two mtDNA-related maintenance
processes: mitochondrial turnover comprising of relaxed replication and degradation of mtDNA,
and de novo point mutations arising during mtDNA replication (Figure TXT2). The model is based
on a minimal conservative assumption of the cellular mtDNA population existing as a well-mixed
pool, due to fast fusion and fission dynamics of mitochondria (30). Analysis of mtDNA replication
process using labeling kinetics have indicated that all genome replicate independent from each
other and also the independence is conserved at the level of nucleoids (28). Consistent with these
observations, in a turnover event, each mitochondrial DNA is randomly sampled and subjected to
replication. Each mitochondrion that undergoes autophagy (or mitophagy) is assumed to contain

random number of mtDNA copy number (n, ), sampled according to Poisson distribution (with

mean mtDNA count = 10) (27,28), and the number of wild-type mtDNA undergoing degradation is

obtained as:
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where x represents the number of wild type mtDNA chosen for the mitophagy.

De novo point mutation can occur during replication of mtDNA due to mis-pairing

associated with ROS-induced mutagenic lesions such as 8-hydroxy-2-deoxyguanosine (80HdG)



(31) or as random errors arising due to finite polymerase-y (POLG) fidelity (32). Consequently,
each replication of a wild-type mtDNA has a finite probability, given by the mutation rate
constant (kn,), to produce a mutant. In a mutation event, single mutated mtDNA forms and the
original mtDNA molecule remains intact. Thus, in the event of a de novo point mutation, mutant
mtDNA count is increased and the wild-type mtDNA population is conserved. Here, the number

of de novo mutant mtDNA is randomly chosen from a binomial distribution: (27)
x) ., oy
g)=| |k (1-k,) [10]
y

where y denotes the number of de novo mutations resulting from replication of x wild-type

mtDNA.
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Figure TXT2: Stochastic model of mtDNA turnover dynamics in a mouse cardiomyocytes. Stochastic drift in

mtDNA deletion dynamics results from following random processes. (I) The mitochondrion that undergoes a



turnover event is randomly selected from the population. The autophagy of mitochondrion is simulated by
removing all the mtDNA molecules associated with the mitochondrion. (IT) Replication of a single mtDNA
molecule occurs by random selection of mtDNA from the mitochondrial DNA population. (III) During the wild-
type mtDNA replication, there exists a finite probability equal to the de novo mutation rate (k,) for the

replication process to give a mutant mtDNA.
Based on these probabilities, the in silico model is formulated as Chemical Master Equation (CME)
(33) in which each mtDNA-related process: replication without mutation, replication with de novo
mutations and degradation, is described as a jump Markov process with the following state
transitions (Figure TXT2):

Wk%d¢

M—">¢

Wbk s gy [11]

M—Lts M+M

W—tte S+ M
The first two transitions reflect the mitochondrial degradation (mitophagy), the third and forth
reactions represent replication of mtDNA without mutation, and the last reaction represents the
de novo mtDNA point mutation. A general formulation of CME for the mtDNA turnover process is

given by (26,34):
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[12]
(W+M)-P(W,M;t)

The probability density function P(W,M;t) denotes the probability of a cell in a tissue to
contain W and M copy numbers of wild-type and mutated mtDNA, respectively, given an initial

condition of the mtDNA population in the cell (P(W,M;t

WO,MO), not explicitly stated here for

brevity). The parameters k,, k, and k, are the specific probability rate constants of mtDNA

degradation, de novo mutations and replication rates, respectively. The terms in the curly braces
of Equation 4 represent the hypergeometric sampling of mtDNA from the mitochondrial
population. The first two terms in Equation 4 represents degradation of mtDNA in a single
mitochondrion. The third line in the Equation 4 represents the de novo deletion generated during
the replication of a wild-type mtDNA. The last pair of terms corresponds to replication of wild-
type and mutant mtDNA. The CME can be solved numerically using a Monte Carlo approach
following modified Stochastic Simulation Algorithm (SSA) (33,35). The implementation of the

modified SSA is described below:

11



1. Compute the propensities of replication and degradation processes as a function of W and

M at time t.

2. Based on the propensities, generate random samples of (7, j) as in the SSA algorithm

(33,35).

3. Select ten mtDNA molecules randomly from the population (hypergeometric sampling) for
mitochondrial degradation and similarly select a single mtDNA from the population for
the process of replication. Each replication of a wild type mtDNA can result in a mutant

mtDNA with a probability given by the mutation rate constant (&, ).

4. Update W and M based on events in steps 2 and 3 and increment the time t by 7.
5. Repeat steps 1 through 4 until the desired end time.

To predict mtDNA mutation burden in a single organ or tissue, millions of such simulations are

performed to capture the mtDNA dynamics of all cells in a tissue.

A.3.2. Tissue-level modeling details

A.3.2.1. Simulations of mouse development

The developmental simulation not only captures the rapid increase in cell number and the
associated increase in the mtDNA copy number in the developmental embryonic cells, but also

accounts for the normal turnover of mtDNA. The embryonic cell divisions begin after fertilization

5
of an oocyte. Mouse oocytes harbor a large number of mitochondria (~1.5x10 mtDNA) (36),
which allow the zygote to multiply initially without the need to replicate mtDNA (37,38).

Furthermore, the total mtDNA number in mouse embryo does not increase until the late stage of
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th th
blastocyst, which is roughly the 7 to 8 cell divisions in development (i.e., 4.7 to 5.5 days post
coitum (d.p.c)) (37-39). During these stages, mtDNA are segregated among the dividing
progenitor cells (Figure TXT1). Consequently, each progenitor cell of the developing embryo has

only few copies of mtDNA at the early egg-cylinder stage (37,38).

In order to account for the mtDNA segregation without replication during the initial cell

divisions, the developmental simulations start from the end of the 8th stage (5 d.p.c) with an
initial mtDNA copy number of ~1000 mtDNA in the embryonic cells during the mouse
embryogenesis (W = 1000, M = 0) (40). Mitochondrial DNA replication is tied to the cellular
division to maintain a steady state number of total mtDNA after each division (41). Mouse
development lasts until 20 d.p.c (42) with a doubling time of roughly 15.5 hours (43). The mtDNA
replication rate is estimated assuming that mtDNA doubles its population every 15 hours while
still undergoing degradation. Here, a cell division occurs when the total number of mtDNA count
reaches roughly twice the steady state homeostatic count (Table TXT1). The segregation of wild-
type and mutant mtDNA between the daughter cells is assumed to occur at random, without any

selective advantage according to a hypergeometric distribution: (27)

fx)= (W+M] [13]

where x denotes the number of wild-type mtDNA in one of the daughter cells after segregation

and n is the total number of mtDNA in a single daughter cell (i.e., n = (W+M)/2). During

13



development, POLG the care taker of the mtDNA replication fidelity, is the main contributor for

point mutations in mtDNA, with negligible oxidative activity and damage (32,44).

A.3.2.2. Simulations of postnatal stage

After birth, cardiomyocytes do not undergo further cellular division. However, the mtDNA
population in cardiomyocytes undergoes hypertrophic growth. The mtDNA population in the
mouse cardiomyocytes increases from 1000 molecules to ~3500 copies per cell (45-47). After
reaching the nominal count of mtDNA in adult cardiomyocytes (47), the mtDNA copy number of
cardiomyocytes is held at constant level, by relaxed replication (48). The functional significance of
relaxed replication in postmitotic tissues like heart and brain is to maintain a healthy population
of mtDNA to satisfy the cellular energy requirements (48,49). The postmitotic simulations
continue from cells produced at the last stage of development (Figure TXT1), in which each cell
maintains mitochondrial biogenesis to balance degradation. Like the developmental stage, the
POLG replication fidelity is assumed to be the main contributor for point mutations in mtDNA,

with negligible oxidative activity and damage.
A.3.2.3. Calculation of mtDNA point mutation frequency
The point mutation burden (mutation frequency) per base pair is determined using,

M

fot [14]
(Vle + Mmt ) : 4bp

sim __
Af -

where W;: and My, are the total number of wild-type and mutant mtDNA molecules in the

tissue, respectively. Consistent with the original work, the length of Tagl recognition site used in
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the RMC assay is 4 bp (7). Note, that the probability of a molecule with two or more mutations in

the same Tagql site is negligible (7).

All simulations were performed using an IBM high performance computing cluster with ~140 Intel
1.6 GHz processors. The simulations were coded and compiled using GNU C++ compiler; G++
(v4.1.1) and run on CentOS (RHEL) Linux platform. On average a complete simulation of a heart
tissue (~20 million cells) from the development to the end of 3 years of mouse’s life span

required approximately 7 hours.

A.3.3. Model Parameters

Model parameters are compiled from published data for mice and we have ensured that they are
consistent with the current literature and the state of the art techniques. The model parameters

used in this work is listed in Tables TXT1.

A.3.3.1. Mitochondrial DNA degradation rate (kg)

Cellular organelles like mitochondria are normally degraded by the autophagy process, where an
entire organelle is engulfed by a lysosome and undergone lytic degradation (50). Different half
lives obtained using different methods and based on different reference macromolecules are
simulated to compare the effect of different mitochondrial turnover rates on the resulting

mtDNA mutation accumulation dynamics in cells of postmitotic tissue.

A.3.3.2. Mitochondrial DNA replication rate (kg)

The mtDNA copy number is maintained throughout the cell growth and divisions (51). The mtDNA

replication should occur to balance the degradation. We have used a constant biogenesis model

15



to simulate the mtDNA replication process. The constant mtDNA replication rate was deduced
based on the homeostatic mtDNA copy number in a cell and the degradation rate of mtDNA.

Thus, the replication constant kg is given by:

ky=k,- (W+M) [15]

A.3.3.3. Mitochondrial DNA point mutation rate (k)

The fidelity of polymerase-y contributes to de novo point mutations during replication. The
polymerase is responsible for the replication and proof reading of newly synthesized strands with
a reported error rate between 1x10” and 1x10® bp™replication™ for the wild-type enzyme (32). A

conservative value (lowest) of 1x10” bp'1 replication'1 is chosen for wild-type mouse simulations.

All the other model parameters are consistent with our earlier work (26) and the model
parameters are compiled from the published data on mice and we have ensured to select
parameters that are consistent with the current literature and the state of the art measurement

techniques. The summary of all the parameters used in this work is described in Table TXT1.

16



Table TXT1 : Model parameters of the stochastic mtDNA turnover process in the cardiomyocytes of in silico
wild-type mouse model

Rates Unit Values Comments | References
Initial value of wild type
W, molecules 1000 mtDNA during start of (37,38,40)
development
M molecules 0 Initial value of mutant mtDNA
0 during start of development
kq d? 2.3377x10° Degradation rate of mtDNA (52)
. - Maximum replication rate of
max leculesd®  5567.85
VB e molecutes mtDNA during development
Maximum replication rate of
Ve oy molecules d” 8.18195 mtDNA during post natal
stage
N i 2 Number of developmental (39,42,43,53)
cve cycles P
Homeostatic set-point of the
(W+M),s  molecules 3500 mtDNA population (skeletal (47)
muscle)
. R de novo deletion rate of
k 1 7
" rep 4x10 tDNA (32,44,54)
Newy i 2 2443x10’ Number of myoblast at (47,55)
ce . ’

development
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B. SUPPLEMENTARY FIGURES

04 —
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Supplementary Figure. 1: Coefficient of Variation (CV) obtained using Poisson
statistics as a function of the fractions of unamplified wells ( p,) and the total
number of PCR wells (ny.ss), determined using Monte Carlo simulations. The arrows
indicate the minimum value of CVs. The optimal value of p, mostly ranged
between 0.2 and 0.3.
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Supplementary Figure 2: Influence of type — | error (false amplification) on the

performance of the proposed RMC protocol. The relative differences between A and the
true value A were obtained from 10* MC independent realizations. The true As were 1.6 and
0.1 molecules per well for the optimized and the conventional RMC assay, respectively. In
the conventional RMC assay, type-| error is assumed to be zero. In both assays, the error rate
of type — Il (false non-amplification) is set at 4% based on experimental data (Supporting
Table 1). Type- | error rates used in the simulations of the proposed RMC protocol were: A.)
2%, B.) 4%, C.) 8%, D.) 15% and E.) 30%.
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Supplementary Figure 3: Influence of type — Il error (false non-amplification) on the

performance of the optimized and original RMC protocol. The relative differences between

A and the true value A were obtained from 10° MC independent realizations. The true As
were 1.6 and 0.1 molecules per well for the optimized and the conventional RMC assay,
respectively. In the conventional RMC assay, type-l error is assumed to be zero. The
frequency of type-I error (false amplification) for the optimized RMC was set at 6% based on
experimental data (Supporting Table. 1). Type- Il rates used for simulations of both the
conventional RMC assay and the proposed optimal RMC assay were: A.) 2%, B.) 4%, C.) 8%,

D.) 15% and E.) 30%.
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C. SUPPLEMENTARY TABLES

Supplementary Table 1: Frequencies of false positives and false negatives encountered during
the RMC trials. Data is based on the quality control experiments of the RMC assay conducted
using the NTC’s and mtDNA templates. Trials used for obtaining the false positive error
frequencies were conducted with PCR amplification of the wells having pure buffer (NTC's).
Whereas, the trails used for determining the false negative error frequencies were based on
amplification of the PCR wells with an average of 10 mtDNA templates in each of the PCR wells.

Thermal Cycler Profile

Stage|Repetitions| Temperature| Time |Ramp Rate

1 1 50.0 °C 2:00 100
2 1 95.0 °C 10:00 100
3 70 95.0 °C 0:45 100

55.0 °C 0:45 100

72.0°C 1:30 100

Standard 7500 Mode
Data Collection : Stage 3 Step 3
PCR Volume: 20 uL

Type - | error

Number of wells used for the trial 100

Number of wells amplified 6
Error frequency 6%
Type - Il error

Number of wells used for the trial 100

Number of wells amplified 96
Error frequency 4%
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Supplementary Table 2: Citations related to the direct application of RMC assay, since its inception. (source: Pubmed)

Studies using the RMC method:

Impact
Year of Factor
Publication |Author Article Journal Volume |IssuelPage No.|(JCR 2009)
Successful tumour necrosis factor (TNF) blocking
therapy suppresses oxidative stress and hypoxia- Arthritis
induced mitochondrial mutagenesis in inflammatory |Research and
1 2011iBiniecka, M. et al. |arthritis. Therapy Epub ahead of print 4.36
Hypoxia induces mitochondrial mutagenesis and Arthritis and
2 2011Biniecka, M. et al. |dysfunction in inflammatory arthritis. Rheumatism [Epub ahead of print 7.332
A random mutation capture assay to detect genomic |Nucleic Acids
3 2011|Wright, J.H. et al. |point mutations in mouse tissue. Research 39 11E73 7.479
Journal of
Mitochondrial mutagenesis induced by tumor-specific |Molecular
4 2010|Gorman, S. et al.  |radiation bystander effects. Medicine 88 7|701-8 5.004
Mitochondrial fusion is required for mtDNA stability in
5 2010(Chen, H. et al. skeletal muscle and tolerance of mtDNA mutations. Cell 141 2280-9 31.152
Age-dependent cardiomyopathy in mitochondrial
mutator mice is attenuated by overexpression of
6 2010|Dai, D.F. et al. catalase targeted to mitochondria. Aging Cell 9 4(536-44 7.554
Overexpression of catalase targeted to mitochondria
7 2009|Dai, D.F. et al. attenuates murine cardiac aging. Circulation 119 21|2789-97 14.816
8 2009|Greaves, L.C. et al. |Quantification of mitochondrial DNA mutation load.  |Aging Cell 8 5|566-72 7.554
Quantification of random mutations in the
9 2008|Vermulst, M. et al. |mitochondrial genome. Methods 46 4263-8 3.763
DNA deletions and clonal mutations drive premature |Nature
10 2008|Vermulst, M. et al. |aging in mitochondrial mutator mice. Genetics 40 4392-4 34.284
Cancers exhibit a mutator phenotype: clinical Cancer
11 2008|Loeb, L.A. et al. implications. Research 68 10(3551-7 7.543
1INl mvnfiniamt cmmalhhvciiawic fbmnvan mallar 4 aa A dAl A




Mitochondrial point mutations do not limit the natural |Nature
13 2007|Vermulst, M. et al. |lifespan of mice. Genetics 39 4{540-3 34.284
Fenl mutations result in autoimmunity, chronic Nature
14 2007(Zheng, L. et al. inflammation and cancers. Medicine 13 7/812-9 27.136
Venkatesan, R.N. et|
15 2006|al. Generation of mutator mutants during carcinogenesis |Dna Repair 5 3(95-7 4.199
Proceeding of
the National
Academy of
Sciences of the
16 2006|Bielas, J.H. et al. Human cancers express a mutator phenotype. USA 103 48(18238-42 9.432
Bielas, J.H. & Loeb, Nature
17 2005|L.A. Quantification of random genomic mutations Methods 2 285-90 16.874
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Papers citing the RMC method:

Impact
Factor
Year of (JCR
Publication |Author Article Journal Volume|lssue |Page No.|2009)
The use of PIG-A as a sentinel gene for the study of the
1 2010|Perzzi, B. et al. |somatic mutation rate and of mutagenic agents in vivo Mutation Research 705 1jpp 3-10 7.097
Annual Reviews of
Mutational Heterogeneity in Human Cancers: Origin and  |Pathology
2 2010(Salk, J.J. et al. Consequences Mechanism 5 51-75 13.5
Stochastic Drift in Mitochondrial DNA Point Mutations: A |PLOS
Poovathingal, Novel Computational
3 2009[S.K. et al. Perspective Ex Silico Biology 5 111000572 5.759
PCR-Based Methods for the Enrichment of Minority Alleles
Milbury, C.A. et |and
4 2009|al. Mutations Clinical Chemistry 55 4/632-40 6.263
Mitochondrial DNA mutations and aging: devils in the
5 2009|Khrapko, K. details? Trends In Genetics 25 2|91-98 8.689
Journals Of
Gerontology Series -A
Martin, G.M. et Biological Sciences
6 2009|al. Aging and Cancer: Two Sides of the Same Coin? and Medical Sciences 64 6/615-17 3.083
Edgar, D & The mtDNA mutator mouse: Dissecting mitochondrial
7 2009(Trifunovic, A. involvement in aging. Aging 1 12/1028-32
The mitochondrial free radical theory of ageing - Where do |Frontiers in
8 2009(Gruber, J. et al. |we stand? Biosciences 13 6554-79 3.603
Kujoth, G.C. et  |Evolving insight into the role of mitochondrial DNA Experimental
9 2008|al. mutations in aging Gerontology 43 120-23 3.342
Kraytsberg, Y. et |Single molecule PCR in mtDNA mutational analysis:
10 2008|al. Genuine mutations vs. damage bypass-derived artifacts. Methods 46 41269-73 3.763
The impact of mitochondrial DNA on human lifespan: a Biotechnology
11 2008Salvioli, S. et al. |view from studies on centenarians. Journal 3 6(740-9 3.146
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A model system for analyzing somatic mutations in
Garcia, A.M. et |Drosophila
12 2007|al. melanogaster Nature Methods 4 5/401-403 16.874
13 2007|Khrapko, K. Mitochondrial DNA mutations and aging: a case closed? Nature Genetics 39 4/445-6 34.284
Current Opinion In
14 2007|Diehl, F. et al. Digital quantification of mutant DNA in cancer patients Oncology 19 136-42 4.088
Yeast mother cell-specific ageing, genetic (in)stability, and
the somatic Nucleic Acids
15 2007|Laun, P. et al. mutation theory of ageing Research 35 22|7514-26 7.479
Kraytsberg, Y. et |Are somatic mitochondrial DNA mutations relevant to our |Expert Opinion on
16 2007|al. health? A challenge for mutation analysis techniques Medical Diagnostics 1 1/109-16 4218
Jacinto, F. V. and [MGMT hypermethylation: A prognostic foe, a predictive
17 2007|Esteller, M. friend DNA repair 6 8[1155-60 4.293
Tumor development: Haploinsufficiency and local network
18 2006/|Smilenov, L.B.  |assembly Cancer Letters 240 1/17-28 3.741
BEAMing up for detection and quantification of rare
19 2006|Li, M. et al. sequence variants Nature Methods 3 2|95-7 16.874
Proceedings Of The
National Academy Of
Random mutations, selected mutations: A PIN opens the |Sciences Of The
door to new United States Of
20 2006|Klein, C.A. genetic landscapes America 103 48(18033-34 9.432
Beckman, R.A. &
21 2005|Loeb, L.A. Negative clonal selection in tumor evolution Genetics 171 42123-31 3.889
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