

pBAD-xylFGH

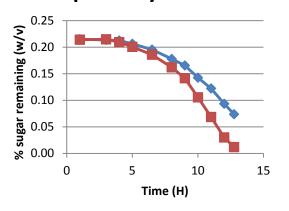


Figure S1: Neither low-level supplementation with xyIAB nor xyIFGH is sufficient to eliminate ara/xyl diauxie. Strain MG1655 transformed with the indicated plasmids were grown overnight and then diluted 1:20 into fresh MMM supplemented with 0.4% total sugars and appropriate antibiotics. Cultures were grown at 37° with 200 RPM agitation. Samples were withdrawn at indicated time points, the OD_{600} was measured and the sugar was analyzed using liquid chromatography with refractive index detection.

Q1	Q3	Protein	Sequence
506.303	702.393	araA1	araA.LPVANALWK.y6
617.288	705.336	araA2	araA.WNEVYYGFR.y5
670.882	986.531	araB	araB.QLLPALTEAWAK.y9
527,798	629.325	wull D D	
527.796	685.388	xyIB2	xylB.LAQIAANPEK.y6
		xyIF1	xyIF.LLTPIDVNK.y6
523.777	759.436	xyIF2	xyIF.ADTTLNNGLK.y7
535.316	730.373	xylG	xyIG.ILILDEPTR.y6
529.801	775.406	xyIR1	xyIR.VALSSVAQGAR.y8
517.306	819.472	xyIR2	xyIR.ITLLFNANK.y7
574.78	870.45	XyIA1	xyIA.FMQMVVEHK.y7
678.33	1023.51	XyIA2	XylA.AGGFTTGGLNFDAK.y10
643.864	1158.663	araC1	araC.QQLGISVLSWR.y10
643.864	1030.604	araC2	araC.QQLGISVLSWR.y9
643.864	917.52	araC3	araC.QQLGISVLSWR.y8
643.864	860.499	araC4	araC.QQLGISVLSWR.y7
643.864	747.415	araC5	araC.QQLGISVLSWR.y6
643.864	660.383	araC6	araC.QQLGISVLSWR.y5
643.864	561.314	araC6	araC.QQLGISVLSWR.y4
563.286	997.47	araD1	araD.KPSSDTPTHR.y9
563.286	900.417	araD2	araD.KPSSDTPTHR.y8
563.286	813.385	araD3	araD.KPSSDTPTHR.y7
563.286	726.353	araD1	araD.KPSSDTPTHR.y6
563.286	611.326	araD2	araD.KPSSDTPTHR.y5
563.286	510.278	araD3	araD.KPSSDTPTHR.y4

Table S2: Protein transitions used for measuring relative concentrations of xyl and ara proteins.

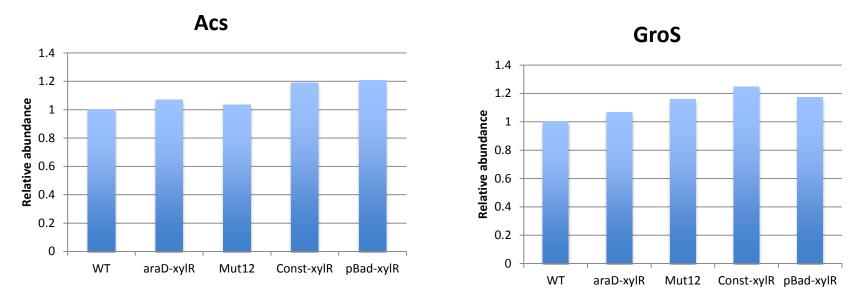


Figure S3: Housekeeping genes Acs and GroS have consistent concentrations for all treatments. See text for details.

Primer name	Sequence
S8A-xyIR xyIR Gib F	gatcttttaagaaggagatatacatATGTTTACTAAACGTCACCGCATC
S8A-xyIR xyIR Gib R	ggagatccttactcgagtttggatccCTACAACATGACCTCGCTATTTACATCGCG
S8A-xyIR S8A Gib F	CGCGATGTAAATAGCGAGGTCATGTTGTAGggatccaaactcgagtaaggatctcc
S8A-xyIR S8A Gib R	GATGCGGTGACGTTTAGTAAACATatgtatatctccttcttaaaagatc
pUA66 PxylA F	AGCATctcgagCATGGTGTAGGGCCTTCTGTAGTTAG
pUA66 PxylA R	AGCATggatccTAATATTGGGCACTCCCTTTCAGTTG
XYIR SD OPT F	GTAATTTTAAGAAGGAGGAATACATATGTTTACTAAACGTCAC
XYIR SD OPT R	GTTTAGTAAACATATGTATTCCTCCTTCTTAAAATTACTGCCC
BB xyIAB EcoRI F	agcatGAATTCttaagaaggaggtatacatATGCAAGCCTATTTTGACC
BB xyIAB BamHI R	ATGCTggatccTTACGCCATTAATGGCAGAAGTTGCTGATAG
BB xylFGH EcoRI F	agcatGAATTCttaagaaggaggtatacatATGAAAATAAAGAACATTCTACTCACCC
BB xylFGH BamHI R	ATGCTggatccTCAAGAACGGCGTTTGGTTGCGGAG
PxyIF const R	GATAAAAATCTGTAATTGTTTTCCCCTGTTTAGTTGCTAAAAA
PxyIF const F	AGCATggatccATTTTAGCAACTgAACAGGGcttgtCAATTACAGATTTTTATC
xyIAB BamHI F	TATTAGGATCCTCTAGATTTAAGAAGGAGATATACATATGCAAGCCTATTTTGACC
xylAB KpnI R	ATGCTggtaccTTACGCCATTAATGGCAGAAGTTGCTGATAG
pUA66 const R	GTATATCTCCTTCTTAAATCTAGAGG
pUA66 const F	AGCATggtaCCTGAATTGTACAAATAAATGTCC
xylFGH Con HindIII F	CTCTAGATTTAAGAAGGAGATaagcttATGAAAATAAAGAACATTCTAC
xylFGH Con KpnI R	CATGCCTGCAGGTCTGGACATggtaccTCAAGAACGGCGTTTGGTTG
xylR Con HindIII F	GAGATaagcttATGTTTACTAAACGTCACCGC
xylR Con KpnI F	GACATggtaccCTACAACATGACCTCGCTATTTAC
pUA66 con KpnI F	CAACCAAACGCCGTTCTTGAggtaccATGTCCAGACCTGCAGGCATG
pUA66 con HindIII R	GTAGAATGTTCTTTATTTTCATaagcttATCTCCTTCTTAAATCTAGAG
araD-xylR F	GAAGGCATATTACGGGCAGTAAttttaagaaggagatatacatATG
araD-xylR R	GGCGTTTGAGATCTTCTAACATgatcttttgaattcccaaaaaaacgg
araD KO F	GCGCGGCGTCTTTGTGATCAAACCTTCCGGCGTCGATTACgtgtaggctggagctgcttc
araD KO R	AGCCTGGTTTCGTTTGATTGGCTGTGGTTTTATACAGTCAatccggggatccgtcgacc
araD KI FI	GGTATTAGAAGCCAACCTGG
xyIR KI R	agcctGGTTTCGTTTGATTGGCTGTGGTTTTATACAGTCAcCTACAACATGACCTCGC

Table S4: Primers used for all constructs and mutagenesis.