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S.1 Artificial data with a clustering structure

S.1.1 Preparation

By using a multivariate Gaussian generator (MVG) and a multivariate Log-Normal generator [see: Wang
SS (2004) Casualty actuarial society proc. LXXXV] we have produced several synthetic time series which
approximate a given correlation structure R∗. Specifically, we have generated N stochastic time series
yi(t) of length T (i = 1...N , t = 1...T ) with zero mean and Pearson’s cross-correlation matrix R that
approximates R∗. As for the starting correlation structures R∗, we have used block diagonal matrices
where the blocks are the artificial correlated clusters. The matrix R∗ has zero inter-cluster correlations
ρou∗ and large intra-cluster correlations ρin∗ within the diagonal blocks. To this pre-defined cluster
structure, we added a number Nran of random correlations unrelated to the clusters. We have chosen
T = 10×N and we added a noise term ηi(t) obtaining a new set of dataseries

y′i(t) = yi(t) + cσiηi(t) , (S.1)

where σi =
√
〈y2i 〉 − 〈yi〉

2
is the standard deviation of yi(t) and c is a constant used to tune the relative

amplitude of noise. We have used a Normally distributed noise with probability distribution function
p(η) ∝ exp(−η2/2) and a log-Normally distributed noise with probability distribution function p(η) ∝
exp(− log(η)2/2). We have varied the relative amplitude of noise c from 0 to 7 with constant intra-
cluster correlation in R∗ at ρin∗ = 0.9. We also have used power-law distributed noise, with probability
distribution function p(η) ∝ 1/ηα+1. Specifically, this noise was numerically generated by using η(t) =
±|ηun(t)|(−1/α), where ηun(t) is a uniformly distributed noise in (0, 1] and the sign in front is chosen at
random for each t with probability 50%. In this case, we have varied the relative amplitude of noise c
from 0 to 0.8 with exponent α = 1.5 and constant intra-cluster correlation ρin∗ = 0.9. We also have varied
the exponent α between 1 to 3 keeping c = 0.1 and ρin∗ = 0.9. Examples of the obtained correlation
matrices are reported in Fig.S.1 for the MVG and Fig.S.2 for the log-normal multivariate generator.

All these different manipulations produce a similar effect where by increasing the amplitude of noise
or by decreasing the exponent or by reducing ρin∗, the Pearson’s cross-correlation matrix R passes from
a very well defined structure close to R∗ to a blurred structure where the average intra-cluster correlation
(
〈
ρin
〉
) becomes smaller and finally it becomes equal to the average inter-cluster correlation (〈ρou〉) and

no correlation structure can be any longer observed.
In summary, the simulated data were generated by combining the following possibilities.

• Partitions:

– Regular Partitions (all clusters of the same size),



2

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Gaussian Noise, c = 0.2, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(b) Gaussian Noise, c = 1.8, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(c) Gaussian Noise, c = 4.2, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(d) Log-normal Noise, c = 0.2, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(e) Log-normal Noise, c = 0.8, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(f) Log-normal Noise, c = 2, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(g) Power-law Noise, c = 0.05, ρin∗ =
0.9, ρou∗ = 0, α = 1.5, Nran = 5.
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(h) Power-law Noise, c = 0.25, ρin∗ =
0.9, ρou∗ = 0, α = 1.5, Nran = 5.
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(i) Power-law Noise, c = 0.65, ρin∗ =
0.9, ρou∗ = 0, α = 1.5, Nran = 5.

Figure S.1. Visualization of correlation matrices of synthetic data sets generated from MVG with
partition of cluster sizes 4,8,16,32 and 64 where relative noise amplitude c has been varied to change the
resolution of clustering structure. The parameters are specified underneath each figure. The first row
adjusts c for Gaussian noises, the second adjusts for log-normal noises, and the third adjusts for
Power-law noises with α = 1.5.
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(a) Gaussian Noise, c = 0.3, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(b) Gaussian Noise, c = 2.1, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(c) Gaussian Noise, c = 5.1, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(d) Log-normal Noise, c = 0.2, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(e) Log-normal Noise, c = 0.8, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(f) Log-normal Noise, c = 2.8, ρin∗ =
0.9, ρou∗ = 0, Nran = 5.
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(g) Power-law Noise, c = 0.05, ρin∗ =
0.9, ρou∗ = 0, α = 1.5, Nran = 5.
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(h) Power-law Noise, c = 0.25, ρin∗ =
0.9, ρou∗ = 0, α = 1.5, Nran = 5.
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(i) Power-law Noise, c = 0.65, ρin∗ =
0.9, ρou∗ = 0, α = 1.5, Nran = 5.

Figure S.2. Visualization of correlation matrices of synthetic data sets generated from log-normal
multivariates with partition of cluster sizes 4, 8, 16, 32 and 64 where relative noise amplitude c has been
varied to change the resolution of clustering structure. The parameters are specified underneath each
figure. The first row adjusts c for Gaussian noises, the second adjusts for log-normal noises, and the
third adjusts for Power-law noises with α = 1.5.
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– Irregular partitions (clusters with different sizes).

• Type of multivariate random variables:

– Multivariate Gaussian Distribution;

– Multivariate Log-normal Distribution.

• Type of perturbation noises:

– Univariate Gaussian Distribution;

– Univariate Log-normal Distribution;

– Univariate Power-law Distribution.

• Relative noise amplitude c.

• Random background elements Nran.

S.1.2 Comparison with different clustering methods

Figure S.3 shows the performance curves evaluated via adjusted Rand index for simulated data with
multivariate Gaussian distribution and Fig.S.4 shows the performance curves for simulated data with
multivariate Log-normal distribution. The results for a wide range of dR > 0.1 for a broad set of
combinations show that DBHT clustering outperforms the other clustering techniques except for Qcut
which performs similarly to the DBHT. However, Fig.S.5 shows that the DBHT clustering can outperform
also Qcut for both Gaussian and Log-normally simulated data when an extreme cluster size differentiation
is present. Specifically, in Fig.S.5, there is a structure of eight small clusters of size 5 elements and one
big cluster of 64 elements, and large number of random background elements (Nran = 25). Let us stress
that the performance curves in Fig.S.5 demonstrate that DBHT clustering is the only technique which
delivers consistent and quality clustering outcomes in spite of the severe conditions applied.

S.2 Artificial data with a hierarchical Structure

S.2.1 Preparation

In order to test the DBHT technique for the detection of the hierarchical structure, we have generated
input matrices R∗ that are organized in a nested block-diagonal structure where block of small sizes are
placed inside blocks of lager sizes. In particular, we looked at regular partitions of 16 ‘small’ clusters
containing 16 elements each with ρin∗1 = 0.95. These small clusters are merged to ‘medium’ clusters with
ρin∗2 = 0.8, and further merged to ‘big’ clusters with ρin∗2 = 0.7. Finally, all clusters are merged to a
single cluster with ρou∗ = 0.15. Similarly, we looked at irregular partitions with clusters of scaling sizes
containing, 4, 8, 16, 32 and 64 elements each, and the structures of small, medium, and big clusters were
embedded by consecutively merging with ρin∗1 , ρin∗2 , ρin∗3 and ρou∗.

S.2.2 Comparison with different linkage methods

We have simulated 30 different sets of multivariate Gaussian data series of length T = 10×N by using
nested hierarchical block-diagonal input matrices R∗. An example of R∗ is provided in Fig.S.6(a) (same
as Fig.2(a) in the paper). We have tested the capability of the DBHT method to recognize hierarchies by
moving through the different hierarchical levels varying the number of clusters from only one at the top
hierarchy to the number of elements at the lowest hierarchy. At each number of clusters we have measured
the adjusted Rand index with respect to the ‘large’, ‘medium’ and ‘small’ partitions. Figs.S.7(b-d) show
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(a) Gaussian data with Gaussian noise and
regular Partition.
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(b) Gaussian data with Gaussian noise and
irregular Partition.
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(c) Gaussian data with lognormal noise and
regular Partition.
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(d) Gaussian data with lognormal noise
and irregular Partition.
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(e) Gaussian data with power-law noise
and regular Partition.
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(f) Gaussian data with power-law noise and
irregular Partition.

Figure S.3. Adjusted Rand index for various data sets simulated via Gaussian (Normal) distribution
with ρin∗ = 0.9, ρou∗ = 0 and Nran = 5. For each value of c (see Eq.S.1), 30 data sets were generated in
order to get stable statistics for < dR > and adjusted Rand score.

the average adjusted Rand index and the standard deviations over the 30 sets of synthetic data obtained
by using the DBHT method, the average linkage method and the complete linkage method. One can
observe in Fig.S.7(b) that all three methods successfully detect the 4 large clusters retrieving adjusted
Rand index near to unity. At following hierarchical levels only the DBHT method consistently retrieves
the maximum value for the adjusted Rand index respectively at the hierarchical partitions with 8 and 16
clusters. Conversely, the other two methods achieve lower maximal values of the adjusted Rand index at



6

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

<dR>

A
d

ju
s
te

d
 R

a
n

d
 I

n
d

e
x

 

 

DBHT

k−means++

SOM

kNN−Spectral

Qcut

(a) Lornogmal data with Gaussian noise
and regular Partition.
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(b) Lognormal data with Gaussian noise
and irregular Partition.
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(c) Lognormal data with lognormal noise
and regular Partition.
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(d) Lognormal data with lognormal noise
and irregular Partition.
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(e) Lognormal data with power-law noise
and regular Partition.
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(f) Lognormal data with power-law noise
and irregular Partition.

Figure S.4. Adjusted Rand index for various data sets simulated via Log-normal distribution with
ρin∗ = 0.9, ρou∗ = 0 and Nran = 5. For each value of c (see Eq.S.1), 30 data sets were generated in order
to get stable statistics for < dR > and adjusted Rand score.

a larger number of clusters inconsistent with the sizes of the synthetic data structure. We have tested
other partitions and different levels of noise verifying that the DBHT method is consistently delivering
good performances in comparison with the other established methods. An example, by using power law
noise and clusters of scaling sizes respectively of 4, 8, 16, 32 and 64 elements is reported in Fig.S.8(a). The
dendrograms for the DBHT, and the average linkage and the complete linkage methods are respectively
reported in Figs.S.8(b,c,d). The comparison between the adjusted Rand indexes is reported in Fig.S.9.
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(a) Gaussian Data with Gaussian Noise.
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(b) Gaussian Data with Lognormal Noise.
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(c) Gaussian Data with Power-law Noise.
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(d) Log-normal Data with Gaussian Noise.
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(e) Log-normal Data with Lognormal
Noise.
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(f) Log-normal Data with Power-law Noise.

Figure S.5. Adjusted Rand index for various data sets simulated via Gaussian and Log-normal
distribution with ρin∗ = 0.9, ρou∗ = 0 and Nran = 25. This case refers to a cluster structure with eight
clusters of size 5 elements, and one cluster of size 64 elements. For each value of c (see Eq.S.1), 30 data
sets were generated in order to get stable statistics for < dR > and adjusted Rand score. Figure (a) and
(f) are the same of Fig.1 in the paper and are here reported for completeness and for an easier
comparison.

One can see that, also in this case, the DBHT technique consistently outperforms the linkage methods.
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Figure S.6. Hierarchical clustering for uniform partition with a power law noise with exponent α = 1.1
and noise level c = 0.03 (a) Correlation template R∗ for a synthetic data structure with uniform sizes of
16 elements each. (b) Dendrogram associated with the DBHT hierarchical structure. (c) Dendrogram
associated with the Average linkage. (d) Dendrogram associated with the Complete linkage.

S.3 Lymphoma data analysis

S.3.1 Emergence of GCB-like and ABC-like Patterns on PMFG

Here, we report how the GCB-like and ABC-like classification of DLBCL subtypes naturally emerges in
the PMFG. This is shown in Fig.S.10 where we can observe that ABC-like DLBCLs are dominant on the
top of PMFG, and mainly occupy sample-cluster ‘7’ and ‘9’. On the other hand, GCB-like DLBCLs are
dominant on the center of PMFG, and mainly occupy sample-cluster ‘1’, ‘5’ and ‘7’. Among the sample-
clusters associated with DLBCL, sample-cluster ‘1’ and ‘5’ are distinctively characterized by GCB-like
DLBCL, sample cluster ‘9’ is characterized by ABC-like DLBCL. Interestingly, sample cluster ‘1’ and
‘5’ indicate a further sub-classification of GCB-like DLBCL, and yet show superior survival rates than
sample clusters associated ABC-like DLBCL, a more fatal subtype indicated by Alizadeh et al 2000 than
GCB-like DLBCL (See Table 1 in the main paper). Furthermore, sample-cluster ‘7’ is a mixture of these
two subtypes, and it yet shows much worse survival rates than sample-cluster ‘9’ in which is present a
much larger portion of ABC-like DLBCL (See Table 1 in the main paper). This clearly shows that the
DBHT clustering indicates further meaningful subtypes of DLBCLs with respect to the GCB-/ABC-like
classification of Alizadeh et al 2000.
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Figure S.7. Adjusted Rand index for the comparison between the synthetic partition in Fig.S.6(a)
and the partitions retrieved by cutting the dendrograms from our DBHT clustering method at various
numbers of clusters. (a) Comparison between the synthetic partition with the 4 large clusters and the
partitions from DBHT, average linkage and complete linkage. (b) Comparison between the synthetic
partition with the 8 medium clusters and the partitions from DBHT, average linkage and complete
linkage. (c) Comparison between the synthetic partition with the 16 small clusters and the partitions
from DBHT, average linkage and complete linkage. (d),(e),(f) Details of the upper figures showing the
region where the DBHT has the maximum. The plots report average values over a set of the 30 trials,
the error bars are the standard deviations.

S.3.2 Analysis of significant gene-clusters for sample-clusters

In order to look for significant gene-clusters which distinguish each sample-cluster, we have performed
a series of statistical analysis on the gene-clusters of the data found by DBHT clustering. Specifically,
we have performed a combination of differential expression and enrichment analyses. Firstly, for a given
sample-cluster, we have looked for a set of differentially expressed gene-profiles for a given cut-off p-
value. Then we have calculated enrichment statistics for each gene-cluster by asking whether this cluster
significantly enriches for the differentially expressed profiles. By varying the cut-off p-values, we have
identified the most significant gene-cluster for the particular sample-cluster by choosing the gene-cluster
that remains significantly enriched for the smallest cut-off. In order to identify differentially expressed
profiles for each cut-off p-value, we have performed non-parametric Kruskal-Wallis one-way ANOVA test.
The enrichment statistics has been evaluated by using the hypergeometric test with significance level of
p-value 0.05, where the p-values were adjusted by Bonferroni correction. Fig.S.11 reports the smallest
cut-off p-values for each gene-cluster, for each sample-cluster. The list of labels for the most significant
gene-clusters is shown in Table 1. Except for sample-cluster ‘2’ and ‘6’, each sample-cluster is assigned
to a unique gene-cluster. For what concerns sample-cluster ‘2’ this is most likely due to the small cluster
size. Instead, we note that sample-cluster ‘6’ corresponds to a collection of T Cell samples, and we suspect
that the emergence of multiple significant gene-clusters is due to the broad spectrum of T cells in the
physiology of lymphoma.
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Figure S.8. (a) Correlation template R∗ for a synthetic data structure with clusters with scaling sizes
of 4, 8, 16, 32 and 64. (b) Dendrogram associated with the DBHT hierarchical structure. (c)
Dendrogram associated with the Average linkage. (d) Dendrogram associated with the Complete
linkage.

S.3.3 Gene Ontology analysis on significant gene-clusters

Among all significant gene-clusters, we have chosen a subset of gene-clusters which are associated to
lymphoma malignancies, and we have performed Gene Ontology (GO) analysis on these gene-clusters in
order to investigate associated biological processes. The analysis has been performed with significance
level of p-value 0.05 on a plug-in software for Cytoscape, called BiNGO, and we applied Bonferroni
correction. We have obtained a number of significant biological processes which are reported in Table 2.
These biological processes indicate the underlying genetic mechanisms of which genes in the same gene-
cluster share. For instance, gene-cluster ‘44’ is associated to a large number of GO terms for cell cycles
and cell cycle regulation. Indeed, this gene-cluster contains, for various phases, a key cell-cycle regulator
CDK1 whose over-expression pattern is a characteristic feature of DLBCL as discussed in the main paper.
On the other hand, none of the significant biological processes was captured by GO analysis for gene-
cluster ‘102’. However, by no means, this cluster is un-significant for the sample-cluster. Indeed, as
the enrichment analysis in Fig.S.11 suggests, gene-cluster ‘102’ remained enriched for very low p-value
∼ 10−6, and it includes biologically significant genes for CLL such as IRF1 as reported in the main paper.
In Table 3 we report the full list of clones for the gene-cluster ‘102’.
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Figure S.9. Adjusted Rand index for the comparison between the synthetic partition in Fig.S.8(a)
and the partitions retrieved by cutting the dendrogram from the DBHT clustering method at various
number of clusters. (a) Comparison between DBHT clustering and the synthetic partition with the 2
‘large’ clusters. (b) Comparison between DBHT clustering and the synthetic partition with the 5
‘medium’ clusters. (c) Comparison between DBHT clustering and the synthetic partition with the 10
‘small’ clusters. (d),(e),(f) Details of the upper figures showing the region where the adjusted Rand
index from DBHT has the maximum. The plots (b), (c) and (d) report average values over a set of the
30 trials, the error bars are the standard deviations.

S.4 Computational Complexity Analysis

Computationally expensive operations in DBHT algorithm include:

I) construction of PMFG;

II) construction of bubble hierarchical tree;

III) construction of DBHT hierarchy;

IV) computation of shortest path lengths.

S.4.1 Construction of PMFG

Construction of PMFG consists of two main steps: i) sorting the list of all pairs of vertices by the
respective similarity values; ii) checking the planarity of the graph when a new edge is added. We have
used the built-in command ‘sort()’ in MATLAB, which runs in O(n log(n))for n elements. Since the
sorting takes place on the full list of |V |(|V | − 1)/2 pairs, its time complexity is O(|V |2 log(|V |)).
In order to check the planarity, we have utilized Boyer-Myrvold algorithm. The algorithm runs in O(|V |)
[1], therefore the worst case runtime is O(|V |3) for |V |(|V |−1)/2 edges. In practice, the PMFG algorithm
terminates well before it reaches the end of the sorted list of edges, and the growing planar graph contains
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Figure S.10. Visualization on the PMFG of the GCB-like and ABC-like classifications as given by
Alizadeh et al 2000. The labels inside the symbols correspond respectively to GCB-like DLBCL (G)
and ABC-like DLBCL (A). The symbols are the same used to represent the sample clusters found by
DBHT technique in Fig.4 in the main paper .

less vertices than |V |. Therefore, the overall time complexity for checking planarity of all edges in the
PMFG follows O(|V |α) with α < 3.
We have tested the runtime of PMFG algorithm on MATLAB for a |V |×|V | Pearson’s correlation matrix
with a clustering structure made of two equal-sized clusters with ρ∗in = 0.3, generated from multivariate
Gaussian time series of |V | elements of length 10|V |. We have observed that the runtime scales with
O(|V |α) with α ∼ 2.5.

S.4.2 Construction of bubble hierarchical tree

The core of the construction of the bubble hierarchical tree consists of three main steps [2]: i) identifying

all 3-cliques kp; ii) finding their respective interior/exteriors G
in/ex
p ; iii) checking the separating property.

In order to identify all 3-cliques, we have utilized a simple search algorithm based on the detection
of common neighbors of vertices linked by an edge. Specifically, we have implemented the following
algorithm: (a) initialize the list of 3-cliques CliqList; (b) list the edges in the PMFG; (c) for each edge,
look for the set of common neighbors and retain the set of respective 3-cliques; (d) for each 3-clique from
(c), check if the 3-clique is present in the list CliqList, and add to CliqList if not. Utilizing sparsity
of PMFG, (a) and (b) demand O(|V | + |V |α) with α < 2. Time complexity of step (c) depends on the
number of 3-cliques in the PMFG, which is linear in |V | [3]. Therefore, in the worst case, time complexity
for checking presence of one 3-clique in CliqList is linear in |V |, and it gives the upper bound of the
entire operation O(|V |2).

Once CliqList is complete, we perform the searches for G
in/ex
p for all 3-cliques to build the bubble

hierarchy. Specifically, for each kp, we do four operations: 1) remove kp from G; 2) choose a random
vertex vo from G/kp; 3) perform Breadth First Search (BFS) from vo to identify interior/exterior of kp;
4) repeat 1)-3) for all kp. Steps 1 and 2 are computationally fast. Time complexity of step 3) depends
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Figure S.11. Plot of cut-off p-value for Kruskal-Wallis one-way ANOVA test -vs- enriched
gene-clusters. Circles represent the smallest cut-off p-value for individual gene-clusters.

on BFS, which is known to be O(|E′|+ |V ′|) where E′ and V ′ are the sets of visited edges and vertices.
Since some 3-cliques of PMFG are separating, it implies that BFS may explore a small portion of V , this
gives an upper bound of O(|E|+ |V |) = O(|V |). Consequently, the time complexity for performing BFS
for all 3-cliques is no larger than O(|V |2).
Lastly, in step 4 the hierarchical tree is built by comparing the (kp∪Ginp ) for each kp to all other (kq∪Ginq )

checking the relation (kp ∪ Ginp ) ⊆ (kq ∪ Ginq ) according to Ref. [2]. For a given pair of kp and kq, this
requires to perform at most |V | operations, to check interior membership of vertices. Repeating this for
all kp, it takes O(|V |2) at most. Altogether, the worst running time of bubble hierarchy construction
follows O(|V |2).
In practice, the runtime is significantly lower in PMFG, because PMFG of a clustered data set tends to
produce a large number of separating 3-cliques, and reduces the runtime to perform BFS. We have checked
the empirical runtime to compute the bubble hierarchy in the PMFGs computed in Subsect. S.4.1, and
it scales approximately with O(|V |).
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Sample Cluster Gene Cluster
1 44
2 6,12,44,177
3 29
4 109
5 1
6 1,4,32,59,154
7 4
8 38
9 125
10 127
11 102

Table 1. List of most significant gene-clusters for the sample-clusters. Sample clusters in bold italic
font correspond to the clusters associated to lymphoma malignancies.

S.4.3 Construction of DBHT hierarchy

In the tailored method employed for DBHT hierarchy the bubble hierarchy, and clustering information
provide sub-divisions within clusters and distance metric needs to be computed and sorted only within
each sub-division and within/between clusters. This speeds up considerably the runtime of our algorithm
with respect to a naive complete linkage which takes, at least, O(|V |2) mainly due to the computation of
|V |2 distance metrics and their sorting [4]. We have tested the empirical runtime of the DBHT hierarchy
computation for the PMFGs computed in Subsect. S.4.1 on MATLAB, and it scales as O(|V |α) with
α ∼ 1.7.

S.4.4 Computation of shortest path lengths

We approached the shortest path problem (IV) by utilizing Johnson’s algorithm in MATLAB BGL library,
a graph library package for MATLAB [5]. Since PMFG is a sparse graph, Johnson’s algorithm works in
O(|V |2 log(|V |)) [6].

S.4.5 Overall Runtime

We have computed empirically the overall time complexity of the DBHT technique on the simulated data
sets described in Subsect. S.4.1, finding that it follows O(|V |α) with α ∼ 2.7, being dominated by the
runtime to construct PMFG. Let us note that PMFG construction is presently not optimized and its
optimization could lead to a consistent reduction of computational time.
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Sample Cluster # GO ID corr p-value Gene Count GO description
1 22403 5.93E-20 25/58 cell cycle phase

:Gene Cluster 44 22402 3.78E-18 26/58 cell cycle process
279 1.77E-16 21/58 M phase
7049 8.78E-15 26/58 cell cycle
51301 9.84E-11 16/58 cell division
51726 1.12E-10 18/58 regulation of cell cycle
278 1.19E-10 17/58 mitotic cell cycle
6996 5.99E-10 27/58 organelle organization
16043 4.30E-08 33/58 cellular component organization
280 1.64E-07 12/58 nuclear division
7067 1.64E-07 12/58 mitosis
87 2.31E-07 12/58 M phase of mitotic cell cycle

48285 2.54E-07 12/58 organelle fission
6259 1.88E-06 15/58 DNA metabolic process
6974 6.49E-06 13/58 response to DNA damage stimulus
51321 1.11E-05 8/58 meiotic cell cycle

75 1.50E-05 8/58 cell cycle checkpoint
6281 3.75E-05 11/58 DNA repair
44260 4.41E-05 34/58 cellular macromolecule metabolic process
48522 9.05E-05 25/58 positive regulation of cellular process
65009 1.48E-04 18/58 regulation of molecular function
33554 1.69E-04 14/58 cellular response to stress
51276 1.87E-04 13/58 chromosome organization

79 2.05E-04 6/58 regulation of cyclin-dependent protein kinase activity
7126 2.42E-04 7/58 meiosis
51327 2.42E-04 7/58 M phase of meiotic cell cycle
51716 2.92E-04 17/58 cellular response to stimulus
50790 5.38E-04 16/58 regulation of catalytic activity
48518 6.09E-04 25/58 positive regulation of biological process
90304 7.63E-04 20/58 nucleic acid metabolic process
6139 1.03E-03 22/58 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process
9987 1.13E-03 54/58 cellular process
43170 1.50E-03 34/58 macromolecule metabolic process
51340 1.54E-03 6/58 regulation of ligase activity
7051 2.17E-03 5/58 spindle organization
44237 2.65E-03 38/58 cellular metabolic process
65003 3.28E-03 13/58 macromolecular complex assembly
34641 3.42E-03 23/58 cellular nitrogen compound metabolic process
51329 4.83E-03 6/58 interphase of mitotic cell cycle
6310 5.41E-03 6/58 DNA recombination
51325 6.05E-03 6/58 interphase
43933 6.96E-03 13/58 macromolecular complex subunit organization
6266 7.42E-03 3/58 DNA ligation
42127 7.43E-03 14/58 regulation of cell proliferation
48519 8.31E-03 22/58 negative regulation of biological process
6807 8.92E-03 23/58 nitrogen compound metabolic process

4 50851 4.41E-02 3/33 antigen receptor-mediated signaling pathway
: Gene Cluster 109

5 44260 3.16E-14 107/206 cellular macromolecule metabolic process
: Gene Cluster 1 43170 2.74E-11 110/206 macromolecule metabolic process

44237 4.72E-10 123/206 cellular metabolic process
43687 4.40E-09 52/206 post-translational protein modification
44238 1.76E-08 124/206 primary metabolic process
43412 1.11E-07 57/206 macromolecule modification
6464 1.47E-07 55/206 protein modification process
44267 3.12E-06 65/206 cellular protein metabolic process
8152 4.17E-06 128/206 metabolic process
50794 8.38E-06 131/206 regulation of cellular process
6468 1.05E-05 31/206 protein amino acid phosphorylation
90304 2.33E-05 49/206 nucleic acid metabolic process
10468 2.74E-05 77/206 regulation of gene expression
6796 4.94E-05 37/206 phosphate metabolic process
6793 4.94E-05 37/206 phosphorus metabolic process
16310 5.55E-05 33/206 phosphorylation
34641 8.94E-05 60/206 cellular nitrogen compound metabolic process
6139 1.23E-04 54/206 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process
31323 1.34E-04 89/206 regulation of cellular metabolic process
51171 1.47E-04 77/206 regulation of nitrogen compound metabolic process
10556 1.64E-04 74/206 regulation of macromolecule biosynthetic process
16071 1.84E-04 21/206 mRNA metabolic process
19219 2.31E-04 76/206 regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process
45449 2.36E-04 69/206 regulation of transcription
6807 2.73E-04 61/206 nitrogen compound metabolic process
50789 3.65E-04 131/206 regulation of biological process
60255 6.25E-04 81/206 regulation of macromolecule metabolic process
7165 6.60E-04 54/206 signal transduction
19538 1.09E-03 67/206 protein metabolic process
31326 1.24E-03 74/206 regulation of cellular biosynthetic process
80090 1.32E-03 83/206 regulation of primary metabolic process
19222 1.35E-03 89/206 regulation of metabolic process
9889 1.71E-03 74/206 regulation of biosynthetic process
16070 2.21E-03 34/206 RNA metabolic process
6357 6.65E-03 28/206 regulation of transcription from RNA polymerase II promoter
7049 7.26E-03 29/206 cell cycle

7 48102 7.16E-03 2/30 autophagic cell death
:Gene Cluster 4

9 6955 5.56E-09 21/75 immune response
: Gene Cluster 125 2376 7.82E-09 25/75 immune system process

9611 2.20E-05 16/75 response to wounding
6952 2.22E-05 17/75 defense response
6950 4.28E-05 28/75 response to stress
23052 5.59E-05 38/75 signaling
50896 8.44E-05 41/75 response to stimulus
6954 1.15E-04 12/75 inflammatory response
6935 3.37E-04 9/75 chemotaxis
42330 3.37E-04 9/75 taxis
40011 5.96E-04 13/75 locomotion
23033 1.55E-03 28/75 signaling pathway
9607 4.73E-03 12/75 response to biotic stimulus
22603 5.24E-03 10/75 regulation of anatomical structure morphogenesis
7165 7.87E-03 25/75 signal transduction
7166 9.01E-03 20/75 cell surface receptor linked signaling pathway

11
(CLL Cluster)

: Gene Cluster 102

Table 2. Over-represented GO terms for each of the significant gene-clusters of sample-clusters 1, 5, 7,
9 (associated to DLBCL), 4 (associated to FL) and 11 (associated to CLL).
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Clone name

*LyGDI=Rho GDP-dissociation inhibitor 2=RHO GDI 2; Clone=23
*LyGDI=Rho GDP-dissociation inhibitor 2=RHO GDI 2; Clone=1240974
*FLI-1=ERGB=ets family transcription factor; Clone=280882
*FLI-1=ERGB=ets family transcription factor; Clone=1354062
(Arp2/3 protein complex subunit p34-Arc (ARC34); Clone=1334980)
(Unknown UG Hs.28242 ESTs; Clone=1303641)
(Aconitase=mitochondrial protein; Clone=1353272)
(B-actin, 421-689; Clone=136)
(B-actin,177-439; Clone=137)
(Retinoblastoma-like 1 (p107); Clone=249725)
(B-actin, 657-993; Clone=145)
*actin=cytoskeletal gamma-actin; Clone=1240822
*Similar to nuclear protein NIP45=potentiates NFAT-driven interleukin-4 transcription; Clone=512953
actin=cytoskeletal gamma-actin; Clone=588637
*Adenine nucleotide translocator 2; Clone=291660
*Adenine nucleotide translocator 2; Clone=1241102
*Calmodulin 1 (phosphorylase kinase, delta); Clone=549080

Table 3. List of clones in gene-cluster 102, which corresponds to the most significant gene-cluster for
sample-cluster 11 associated to CLL.
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