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Supporting Online Materials 
 

Interactive Plots on the Web  
The kinemage files used to generate Figure 1 have been posted on our lab website 

(19), together with links for panels in that figure. Clicking the links will open java applets 
that contain an interactive, labeled PCoA plot of the Procrustes analysis used to generate 
the panel. The viewer can rotate the plot in 3-dimensions, and can also view the first 10 
principal coordinate axes. The coloring and naming conventions online are consistent 
with Figure 1. 

 

Materials and Methods 
 
Subjects  

Table S1 lists the mammalian species included in this study and their diet group. 
Further details about their diets, dietary group classification, plus methods used to 
recover and store fecal samples have been published previously (1). Eighteen members of 
the Calorie Restriction Society were recruited for the present study using a procedure 
approved by the Washington University Human Studies Committee. The volunteers had 
practiced calorie restriction for an average of 7.6 yrs (range 3.5-21 years). The average 
age of the study cohort was 59.6±10.6 years and their body mass index was 19.4±1.3 
kg/m2 (mean±S.D.). None of these individuals had consumed antibiotics in the four 
months prior to enrollment and none had a history of gastrointestinal disorders. Each 
participant provided a fecal specimen that was frozen at -20oC within 30 min after its 
production. Samples were maintained at this temperature until they were received (within 
24h) at a biospecimen repository where they were anonymized and stored at -80oC prior 
to metagenomic analyses. The participants kept detailed diet records for four days prior to 
fecal collection. A dietician analyzed these diet records to quantify macro- and 
micronutrient content using the Nutrition Data System for Research (NDS-R; version 
4.03_31) (16).  

 
Isolation of Fecal DNA and Multiplex Pyrosequencing  

     All mammalian and human samples were subjected to a common protocol for 
DNA extraction. Fecal samples were pulverized with a mortar and pestle at -80oC. A 500 
mg aliquot of each frozen pulverized sample was re-suspended in a solution containing 
500µL of extraction buffer [200mM Tris (pH 8.0), 200mM NaCl, 20mM EDTA], 210µL 
of 20% SDS, 500µL of phenol:chloroform:isoamyl alcohol (25:24:1) and 500µL of a 
slurry of 0.1-mm diameter zirconia/silica beads. Cells were then mechanically disrupted 
using a bead beater (Biospec, maximum setting; 3 min at room temperature), followed by 
extraction with phenol:chloroform:isoamyl alcohol and precipitation with isopropanol. 
An aliquot of the DNA was used for PCR amplification and sequencing of bacterial 16S 
rRNA genes. ~330bp amplicons, spanning variable region 2 (V2) of the gene were 
generated by using (i) modified primer 8F (5´- 
GCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTGGCTCAG-3’) which consists of 
454 FLX Amplicon primer B (underlined), a two base linker (bold) and the universal 
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bacterial primer 8F (italics) and (ii) modified primer 338R (5’ 
GCCTCCCTCGCGCCATCAGNNNNNNNNNNNNCATGCTGCCTCCCGTAGGAGT 
3’) which contains 454 FLX Amplicon primer A (underlined), a sample specific, error 
correcting 12-mer barcode (N’s), a two base linker (bold), and the bacterial primer 338R 
(italics). Three replicate polymerase chain reactions were performed for each fecal DNA 
sample: each 20-mL reaction contained 100 ng of gel-purified DNA (Qiaquick, 
QIAGEN), 8 ml 2.5X HotMaster PCR Mix (Eppendorf) and 0.2 µM of each primer. PCR 
conditions consisted of an initial denaturation step performed at 95 °C for 2 min, 
followed by 30 cycles of denaturation (95°C, 20 s), annealing (52°C, 20 s) and 
amplification (65°C, 1 min). Amplicons generated from each set of three reactions were 
subsequently pooled and purified using Ampure magnetic purification beads (Agencourt). 
The amount of DNA was quantified using Picogreen (Invitrogen), and equimolar 
amounts of barcoded samples were pooled for each subsequent multiplex 454 FLX 
pyrosequencer run. 

For multiplex shotgun 454 FLX pyrosequencing, each fecal community DNA 
sample was randomly fragmented by nebulization to 400-800 bp (FLX standard) or 500-
800 bp (FLX Titanium), and then labeled with a distinct MID (Multiplex IDentifier; 
Roche) using the MID manufacturer’s protocol (general library preparation for FLX 
standard, Rapid Library preparation for FLX Titanium). Equivalent amounts of up to 12 
MID-labeled samples were pooled prior to each pyrosequencer run (454 FLX and 
Titanium chemistry).  

 
16S rRNA Data Processing and Analysis 

16S rRNA amplicon sequences were processed using the QIIME (v1.1) suite of 
software tools (20); fasta files, quality files and a mapping file indicating the sequence of 
the 12 nt barcode that corresponded to each sample were used as inputs. QIIME bins 
pyrosequencer reads by samples according to their barcode, de-noises pyrosequencer data 
(21), and classifies reads into OTUs on the basis of sequence similarity [e.g., species 
level phylotypes share ≥97% identity (ID)]. QIIME builds a de novo taxonomic tree of 
the sequences based on their similarity and creates a table of samples versus OTUs that 
can be used, together with the tree, to calculate alpha and beta diversity. Reads were 
aligned using PyNAST, and chimeric OTUs were removed using the ChimeraSlayer 
program (22). Procrustes analysis and network analysis were also performed in QIIME, 
using code made available in release 1.2.0. The network analysis was visualized using 
Cytoscape v2.6.3 (23), and the nodes and edges were placed using Cytoscape’s spring-
embedded algorithm. 

Taxonomic assignments were made using SILVA-VOTE, an algorithm designed for 
improved accuracy in taxonomic assignments of V2 16S rRNA reads. Briefly, a non-
redundant reference database of 34,181 bacterial 16S rRNA V2 regions was created by 
clustering the Silva database (release 102). Taxonomic assignment was made at each 
taxonomic level if more than 75% of the sequences in the cluster had an identical 
designation at that level (otherwise, the level was designated “unknown”). A 
representative sequence from each QIIME-identified OTU was compared by BLAST 
against this custom database, retaining hits with e-value < 10-30. All BLAST hits within 
10% of the best score (up to 100 hits) were used to generate a taxonomic assignment at 
each taxonomic level. If greater than 50% of the hits shared a designation, this annotation 
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was assigned to the OTU. Otherwise, the OTU was noted as “nonidentified” at that level. 
Note that sequences were binned into OTUs with ≥97% sequence identity in lane-masked 
V2 regions. In accord with common convention (24), when 97%ID OTUs had identical 
taxonomic assignments, they were binned as a single ‘species-level phylotype’. When 
97%ID OTUs were assigned to the same bacterial genus, they were treated as a single 
‘genus-level phylotype’. 

 
Shotgun Sequencing Data Processing and Annotation 

Metagenomic data was annotated using custom Perl scripts. Shotgun reads were 
filtered using custom Perl scripts and publicly available software to remove (i) all reads 
less than 60 bases in length, (ii) reads with degenerate bases (N’s), (iii) all duplicates (a 
known artifact of pyrosequencing), defined as sequences whose initial 20 nucleotides are 
identical and that share an overall identity of >97% throughout the length of the shortest 
read (25) and (iv) in the case of human fecal DNAs from the calorically restricted 
individuals, all sequences with significant similarity to human reference genomes 
(BLASTN with e-value < 10-5, bitscore > 50, percent identity > 75%) to ensure the 
continued anonymity of samples.  

Searches against the KEGG (version 52) and MEROPS (release 9.1) databases were 
carried out with BLASTX. A sequence read was annotated as the best hit in the database 
if (i) the E-value was < 10-5, (ii) the bit score was > 50, and (iii) the alignment was at 
least 50% identical between query and subject. In the event that two entries in the 
database had equivalent BLAST scores as the best hit, the read was annotated with both 
entries. The KO, E.C., and KEGG Pathways associated with each KEGG sequence were 
determined using the “ko” file provided by KEGG. Reads were annotated against the 
CAZy database using procedures described previously (26). For each functional 
annotation schema, statistical analysis was performed on a matrix containing the count of 
annotated reads in each sample; e.g., for the KEGG KO data, the matrix contained the list 
of all possible KOs in the rows of the first column and the sample names in the column 
headers. The value in each “cell” of the matrix was the number of times that KO was 
detected as the best BLAST hit of a shotgun read from the sample. All dissimilarity 
metrics and related calculations were generated with QIIME. For every functional data 
type, an evenly rarefied matrix of functional assignments was created, a distance matrix 
using the Bray-Curtis metric was calculated, and results were visualized with Principal 
Coordinates and Procrustes Analysis.  

 
Taxonomic Composition of Shotgun Sequencing Data 

The taxonomic distribution of metagenomic reads was determined using version 3.9 
of MEGAN (6). Metagenomic reads were searched against the NCBI non-redundant 
protein database with BLASTX. We used the additional BLAST parameter –F “m S” as 
suggested by the authors of the software. The search results were processed in MEGAN 
with default parameters to generate the taxonomic profile for each sample. 

 
Detecting Differences in E.C. Abundance and Amino Acid Metabolism  

E.C. analysis comparing the microbiomes of herbivores and carnivores was 
implemented with version 1.0.3 of Shotgun Functionalize R (11). As described in the 
main text, 495 E.C.’s were identified with significantly different relative abundance 
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between carnivore and herbivore microbiomes, using a Benjamini-Hochberg adjusted p-
value of 0.001 as our threshold for significance. These E.C.’s were mapped onto KEGG 
metabolic pathways and inspected visually. For every amino acid, biosynthetic and 
degradative reaction pathways were identified using both KEGG annotations and the 
experimentally confirmed metabolic information collated in the MetaCyc database (27, 
28). For every significantly different E.C. that was detected in a major amino acid 
biosynthetic or catabolic reaction, the relative abundance of the E.C. in the microbiomes 
was plotted. The objective was to eliminate statistically significant results from the final 
analysis if there were not a sufficient number of annotations for biological confidence. 
The following statistically significant E.C.s were not included in the summary analysis: 
(i) E.C.2.1.4.1 (glycine amidinotransferase) was found in only two microbiomes with low 
abundance (four total assignments in Bush Dog, two total assignments in Hyena), and (ii) 
E.C.2.6.1.57 (aromatic amino-acid transferase) which was found in only 7 microbiomes 
with low abundance (maximum of 15 assignments in Polar Bear, median of two 
assignments). The results of this analysis are summarized in Table S6. For every amino 
acid, E.C.s detected in biosynthetic or degradative reactions are noted, as well as 
reversible reactions where likely direction cannot be determined based on available 
information.  

 
Using Procrustes Analysis to Test whether the Functional Properties of a Microbiome can 
be Predicted from the Bacterial Species 

Procrustes analysis, named after the son of the Greek god Poseidon who fit 
unsuspecting travelers to a fixed-size bed by stretching them or removing their feet, is a 
technique for comparing the relative positions of points in two multivariate datasets. The 
method was first introduced by Hurley and Cattell (7), then generalized by Gower (8), for 
comparing psychometric datasets. The method has since been employed in macro-
ecology (29, 30), and in a recent report used to compare datasets obtained from different 
regions of the same 16S rRNA sequence (31). We used the implementation of Procrustes 
analysis in the open-source QIIME microbial community analysis pipeline (20), built 
using the PyCogent libraries (32) and the Python programming language. As noted in the 
main text, this procedure yields a measure of fit, M2, which is the sum of squared 
distances between corresponding data points after the transformation. The significance of 
the association is obtained by a Monte Carlo procedure in which the point labels are 
randomized, M2 is recomputed, and the M2 value of the actual pair of datasets is 
compared to the empirical distribution of M2 values observed for the permuted datasets. 
Because M2 depends on the sample size and the structure of the data, M2 values typically 
cannot be directly compared between datasets, and the statistical significance must be 
computed for each pair of datasets separately. In these studies, we used 1,000 replicates 
for calculating P-values.  

We applied the Bray-Curtis distance metric to the functional data to obtain PCoA 
coordinates for comparison with the 16S rRNA data. We also tested additional qualitative 
(Jaccard) and quantitative (Canberra, Gower) distance metrics on the KO data. All of 
these distance metrics led to the same essential conclusion; the agreement between the 
weighted UniFrac distances and the KO distance matrix was significant over the first 
three dimensions of the Procrustes plot (p<0.05). 
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Assessing Clustering Using the Monte Carlo Procedure  
Monte Carlo simulations allow researchers to directly determine the probability of 

obtaining a result more extreme than the observed metric with random sampling of the 
data. Importantly, this test makes no a priori assumptions of the underlying structure of 
the data (e.g, a parametric distribution) and can thus be powerfully deployed with a range 
of experimental results. To assess sample clustering by diet, we computed the t-statistic 
of the UniFrac distances of 16S rRNA data and (separately) the Bray-Curtis distances of 
KO data, comparing the average distance between the fecal bacterial communities of 
herbivores to the average distance between carnivore communities. This t-statistic was 
treated as the “observed” result. Then, the pairwise distance matrix was randomly 
permuted a set number of times by shuffling the sample labels; in this study, we always 
performed 1,000 independent permutations. For each permutation, the t-statistic was 
recalculated using the new permuted labels. The distribution of the t-test statistic for the 
permutations was compared to the “observed” metric from the real data. The fraction of 
times a permutation resulted in a metric more extreme than the observed metric is the p-
value, the probability that the observed result could have arisen by chance from the 
underlying data. For example, if 11 of the 1,000 random permutations comparing the 
average UniFrac distance of herbivore fecal bacterial communities to the average 
UniFrac distance of carnivore communities had a t-statistic more extreme than the actual 
observed statistic, the reported p-value would be 11/1000, or 0.011. All Monte Carlo 
simulations were implemented using QIIME scripts. The same procedure was employed 
to assess the clustering of conspecific samples, here comparing unweighted and weighted 
UniFrac distances between animals of the same species to distances between animals of 
different species. 

 
Regression Analysis of Data Obtained from Human Subjects 

Linear regression was carried out using the R statistical software package with a 
simple linear model (33). Principal Coordinates were generated using QIIME as 
described previously for the 16S rRNA OTU data and functional KO data using the Bray-
Curtis distance metric, and for the 16S rRNA data using the weighted and unweighted 
UniFrac distances. Principal Coordinates for the other types of functional annotation were 
calculated but not included in linear regression model because they had a high Pearson 
correlation coefficient with the KO Principal Coordinates and thus did not represent 
independent response variables (E.C correlation=0.97, CAZyme correlation=0.87, 
peptidase correlation=0.73).  

For each individual, the average daily intake of carbohydrates, proteins, and 
insoluble fiber was calculated based on the dietary records from the four days proceeding 
fecal sample donation. The position for each calorie-restricted individual’s gut bacterial 
community along Principal Coordinate 1 was regressed against each of the three dietary 
components using a simple linear model. The p-value resulting from the analysis was 
multiplied by three to adjust for the multiple hypotheses tested (Bonferroni adjustment). 
We also implemented a multiple linear regression using all three dietary components and 
their interactions as explanatory variables, with the Principal Coordinate positions as the 
response variable. We used backwards stepwise selection to remove non-significant 
terms from the model. In no case did a mixed model generate significant interactions 
beyond the simple linear models tested previously. 
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The average daily calories consumed by our cohort ranged from 1207-2551 
kCal/day (mean 1673, standard deviation 395 kCal/day). We regressed total kilocalories 
consumed against the PC1 coordinate of our samples for all data categories (16S rRNA 
and functional data). After correcting for multiple-hypothesis testing, total calories were 
not significantly associated with any of these categories (p >0.05).  

 

Results 
 
Prediction of Community Functional Profiles from Species Assemblage Data using a 
Nearest-Neighbor Model  

As noted in the main text, the strong correlation between bacterial 16S rRNA and 
functional profiles made us wonder if the functional configuration of a microbiome could 
be predicted from its 16S rRNA sequences. To test this idea, we developed a nearest-
neighbor model. For a given sample, we predicted its functional composition to be the 
same as that sample’s nearest neighbor (using the weighted UniFrac distance comparison 
of 16S rRNA data). To assess the quality and significance of these predictions, we 
compared the average root mean squared error (RMSE) of our model to the average 
RMSE for one million Monte Carlo trials where each sample’s nearest neighbor was 
chosen at random from the remaining samples. The UniFrac nearest neighbor generated a 
significantly better functional prediction than a random neighbor for all four types of 
functional; for KOs, E.C.s, peptidases, and CAZymes, no permutation in the one million 
trials had a lower RMSE than the UniFrac prediction (p=0). Using the unweighted 
UniFrac distances also led to predicted functional profiles that were significantly better 
than would be expected by chance (KOs, p=0; E.C.s, p=0; proteases, p=0.000252; 
CAZymes, p=0).   

 
Phylogenetic Congruence Testing  

We examined the congruence between host phylogeny and the presence of bacterial 
taxa or particular enzymatic (or other protein) functions in host microbiomes by 
comparing host phylogeny to both the OTUs and KOs present in the fecal samples. We 
first generated a table of each OTU’s or KO’s presence or absence in each sample, and 
selected a number of sequences (without replacement) from each sample's sequences to 
avoid biases associated with uneven sequencing effort among samples (we selected 1,000 
bacterial 16S rRNA sequences from each sample for the OTU analysis, and 5,000 
assigned shotgun sequences for the KO analysis). We then eliminated OTUs or KOs 
present in only one sample, as they were not useful for assessing the congruence between 
fecal microbiomes and host phylogeny. We then searched for OTUs or KOs that were 
present in all members of any distinct monophylogenetic lineage and absent in all other 
samples included in this study. We compared this result to the results obtained on a 
randomized host phylogeny where the samples we obtained were associated with 
randomly chosen tips of the host phylogeny. To summarize the results, we grouped OTUs 
with assignments to identical bacterial genera, and looked for bacterial genera enriched 
for OTUs matching the mammalian phylogeny. Of the 198 different genera assignments 
detected in the subsampled OTU dataset, three (Prevotella, Barnesiella, and Bacteroides) 
were found to be significantly enriched in matching OTUs (see main text; p<0.05 relative 
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to a binomial distribution using the overall abundance of matching OTUs). OTUs that 
lacked a genera assignment were not reported when identifying bacterial genera 
congruent with mammalian phylogeny. Of the 668 OTUs not assigned to a named genera, 
29 (4%) matched a monophyletic group in the mammalian tree, a similar proportion 
found in the genus-assigned OTUs. 

  To account for OTUs and functions whose presence/absence pattern did not 
exactly match a monophyletic group of mammals, we performed a test for increased 
presence within a monophyletic group relative to the expected value given the overall 
abundance of the OTU or function over all samples, using a binomial distribution. 
Categorizing these OTUs into genera as before, Prevotella, Barnesiella, and Bacteroides 
were significantly enriched for OTUs whose presence was congruent with the 
mammalian phylogeny, as well as Ureaplasma, Paludibacter and Pedobacter. Employing 
this method, we found 90 KOs, 2 CAZymes (of 119 tested), and 1 (of 274 tested) 
proteases congruent with host phylogeny. 

Additionally, we employed the method of Ochman et. al. (34) as another test for co-
phylogeny. Their study examined four wild primates species and their fecal microbiota, 
and created a maximum parsimony tree of the gut communities using a character matrix 
of bacterial species normalized abundances that was compared to the primate phylogeny 
(as determined by mitochondrial DNA sequence). To implement their approach, we used 
MESQUITE rather than PAUP for parsimony inference and eliminated bacterial taxa that 
appeared in only a single sample (non-parsimony-informative sites). We also tried a 
variety of parsimony variants (ordered states based on discretized z-scores, with SPR and 
NNI heuristics for tree search). We were able to reproduce their results for the four 
primate species using their source data. However, when applied to our larger mammalian 
tree of 33 species, we did not see an overall match between the host tree and the 
parsimony tree inferred from fecal bacterial communities, providing further evidence 
supporting our conclusion that the distribution of bacterial species does not mirror host 
phylogeny over the whole of the mammalian tree. We did not sample any one closely 
related clade with sufficient density to perform extensive tests of whether the bacterial 
community signal Ochman and coworkers identified dissipates once a particular 
evolutionary depth is reached.  
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Fig. S1.  
Procrustes analysis is robust to a variety of computational approaches.  
Procrustes analysis of 16S rRNA sequences (weighted UniFrac, unweighted UniFrac, 
OTU counts) against KO annotation of shotgun pyrosequencing reads. Every sphere 
represents a single mammalian fecal community and is colored by host diet. The black 
end of each line connects to the 16S data for the sample, while the orange end is 
connected to the functional annotation data. The fit of each Procrustes transformation 
over the first three dimensions,is reported as the M2 value. (A) Procrustes analysis of 16S 
rRNA data (unweighted UniFrac) against KEGG Orthology (KO) groups. (B) Procrustes 
analysis of OTU counts (Bray Curtis metric) against KOs. (C) Procrustes analysis of 16S 
rRNA data (weighted UniFrac) against KOs, using only one animal sample from each of 
the 33 mammalian species. 
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Fig. S2.  
Bipartite network analysis. (A) Close-up of animal node labels for KO bipartite graph 
from Fig. 2B in main text. (B-C) Bipartite network diagrams of evenly sampled 
CAZymes [glyoside hydrolases] (B) ot peptidases (C) Labeled circles (nodes) denote 
animal hosts, and are colored by host diet. Lines (edges) radiating from the host nodes 
connect to microbiome gene nodes representing a single glycoside hydrolase or peptidase 
found in the host fecal microbiome.  
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Fig. S3.  
Procrustes analysis shows that the bacterial lineages and microbiome gene content from 
humans who practice caloric restriction with adequate nutrition give similar clustering 
patterns. (A-D) Procrustes analysis of bacterial 16S rRNA sequences (weighted UniFrac) 
against KOs, CAZymes (glycoside hydrolases), MEROPS (peptidases), and Enzyme 
Commission numbers (E.C.s). Every sphere represents a single mammalian fecal 
community and is colored by host diet. The black end of each line connects to the 16S 
data for the sample, while the orange end is connected to the functional annotation data. 
The fit of each Procrustes transformation over the first three dimensions is reported as the 
M2 value. Spheres are colored differently for each human host. 
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Table S1. 
Metadata on 39 non-human mammals included in this study, including provenance, diet, 
gut physiology, and phylogenetic order. 
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Table S2. 
Mammal 16S rRNA sequencing statistics 



 
 

14 
 

 

Table S3. 
Mammal fecal community DNA shotgun pyrosequencing datasets: statistics. 
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Table S4. 
Mammal fecal community DNA shotgun pyrosequencing datasets: phylogenetic 
assignments. (A) Summary of total hits against the NCBI non-redundant (nr) database. 
(B) Percentage of all reads assigned to the major phylogenetic divisions (normalized to 
total number of reads with hit in NCBI nr database). 
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Table S5. 
E.C.s encoded by genes whose representation is significantly different between 
herbivorous and carnivorous microbiomes. *= Poisson model coefficient. †=Akaike 
Information Criterion, smaller values denote better agreement between model and data. 
‡= Benjamini-Hochberg corrected. §="NA" E.C. with no specific annotation. 
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Table S6. 
Summary of differences in amino acid metabolism between herbivore and carnivore 
microbiomes. 
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Table S7. 
Metadata on 18 calorie restricted humans included in this study, including host BMI and 
intake of major food categories. 
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Table S8. 
16S rRNA sequencing statistics from calorie restricted humans 
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Table S9. 
Shotgun pyrosequencing datasets obtained from fecal DNA prepared from calorie 
restricted humans: statistics. 
 



 
 

29 
 



 
 

30 
 

 

Table S10. 
Shotgun pyrosequencing datasets obtained from fecal DNA prepared from calorie 
restricted humans: phylogenetic assignments. (A) Summary of total hits against the NCBI 
non-redundant (nr) database. (B) Percentage of all reads assigned to the major 
phylogenetic divisions (normalized to total number of reads with hit in NCBI nr 
database). 
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Table S11. 
Results of regression analysis comparing position on Principal Coordinate 1 with host 
dietary intake. 

 

 
 


