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DRIFTER Toolbox for SPM

We have implemented the methods that were presented in the paper to an
SPM toolbox, which is available for download on the toolbox web page:

http://www.lce.hut.fi/research/mm/drifter/

The toolbox has been tested with SPM8 (available at http://www.fil.

ion.ucl.ac.uk/spm/software/spm8/) and offers both batch functionality
and a graphical user interface trough the Batch Editor.

Resources on Kalman Filtering, RTS Smoothing
and IMM

In the manuscript, there was no space to review the basic Kalman filtering
and smoothing theory, and we had to resort to using citations instead of
writing down the implementation retails of the underlying methods. How-
ever, the implementation details are very well documented in standard text
books such as (Bar-Shalom et al., 2001; Grewal and Andrews, 2001) in the
reference list of the article. Furthermore, implementations of all methods
are included in the DRIFTER toolbox for SPM.

The MATLAB implementations of the filters and smoothers together
with various other related methods can be found in the EKF/UKF toolbox
for Matlab, whose link is given below. Links to documentation and course
material using the same notation are also included.

• EKF/UKF toolbox for MATLAB can be found here:

http://www.lce.hut.fi/research/mm/ekfukf/
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• The documentation for the above toolbox provide a quite extensive
overview of the methods:

http://www.lce.hut.fi/research/mm/ekfukf/documentation.pdf

• Filtering and smoothing theory can be found, for example, in the fol-
lowing lecture notes:

http://www.lce.hut.fi/~ssarkka/course_k2011/pdf/course_

booklet_2011.pdf

Details on Benchmarking the Methods

In Section 3.3. RMSE and SNR based benchmarking in the article we pre-
sented a overview of how the methods were compared. A more detailed
description of the benchmarking is presented here.

Root mean square error (RMSE)

The results were numerically benchmarked using two separate methods. The
root mean squared error (RMSE) value was calculated for each estimate.
The RMSE of an estimate (x̂1, . . . , x̂N ) can be defined as

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2, (1)

where (x1, . . . , xN ) is the actual known solution.

Signal-to-noise ratio (SNR)

The second benchmarking method was to compare the signal-to-noise ratios
(SNR) of the estimates. Assume that the signal x(t) is disturbed by a zero
mean noise term ε(t), then the observation is

y(t) = x(t) + ε(t). (2)

The SNR of y(t) can be defined as the ratio of the standard deviations of
the signal and the noise:

SNR =

√
Var[x(t)]

Var[ε(t)]
. (3)
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Component standard deviation estimates

To be more precise, we assume that each voxel match a time series that can
be split into components

y(t) = x(t) + c(t) + r(t) + ε(t),

where y(t) is the observed fMRI signal. As a result of running the methods,
estimate values for each component are returned; x̂(t) is the cleaned BOLD
signal estimate, ĉ(t) and r̂(t) are the cardiac- and respiration-induced noise
component estimates, and ε̂(t) is the white measurement noise component
estimate.

In RETROICOR and DRIFTER(x + ε) estimates of the physiological
noise components are removed (i.e. an estimate of x(t) + ε(t) is returned),
whereas in the DRIFTER(x) solution the estimated noise-free activation
signal is separated (i.e. x̂(t) is returned explicitly). Utilizing these results,
the following standard deviation values are studied:

• σ2y = Var[y(t)] — The variance of the original observed fMRI signal.

• σ2x = Var[x(t)] — The variance of the activation signal component.
Real: From the actual underlying signal x(t). Uncorrected: From the
observed signal y(t). RETROICOR / DRIFTER(x + ε): From the
cleaned signal estimate component x̂(t) + ε̂(t). DRIFTER(x): From
the noise-free signal estimate x̂(t).

• σ2c = Var[c(t)] — The variance of the cardiac noise component. Real:
From the real cardiac component. Uncorrected: N/A. RETROICOR
/ DRIFTER: From the estimate of the cardiac component ĉ(t).

• σ2r = Var[r(t)] — The variance of the respiratory noise component.
Real: Calculated from the real cardiac component. Uncorrected: N/A.
RETROICOR / DRIFTER: From the estimate of the respiration-
induced component r̂(t).

• σ2ε = Var[ε(t)] — The variance of the white measurement noise com-
ponent. Real: From the real added white noise ε(t). Uncorrected /
RETROICOR / DRIFTER(x + ε): N/A. DRIFTER(x): Calculated
by subtracting y(t)− x̂(t)− r̂(t)− ĉ(t) and calculating the variance of
the resulting noise estimate ε̂(t).

• σ2n — The variance of the remaining noise. Real: From the real added
white noise ε(t). Uncorrected: From all noise in signal; c(t)+r(t)+ε(t)
in the simulated case and y(t) in-between activations (i.e. when x(t) ≈
0) in the empirical data case. RETROICOR / DRIFTER(x+ε): From
the cleaned signal estimate component y(t) − x(t) − ĉ(t) − r̂(t) in the
simulated case, and y(t)− ĉ(t)− r̂(t) in-between activations (i.e. when
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x(t) ≈ 0, see details later on) in the empirical data case. DRIFTER(x):
From the cleaned signal estimate component. This is x̂(t)−x(t) in the
simulated case, and x̂(t) in-between activations in the empirical data
case.

As defined in equation (3), the SNR can now be calculated by

SNR =
σx
σn
, (4)

where both σx and σn differ for each five methods.
The above analysis holds on a per-voxel basis. The standard deviations

vary spatially over the data, and therefore we normalize the values by divid-
ing each standard deviation estimate by the signal standard deviation σy in
the voxel. The arithmetic means of these normalized sigmas are then used
in the analysis. This gives an insight into the effect of noise in the data. The
same approach is used in calculating the signal-to-noise ratios; the mean of
all the SNRs over all the voxels is used.

For fair comparison of the methods, four seconds of data was removed
from the beginning and end of each time-series. This is due to both possible
transients in the data and the peak detection method in RETROICOR.

Estimating the measurement noise in empirical data

In the case of analysis of empirical data, we choose voxels mostly from the
high-order object-sensitive cortex for analysis. The voxels were chosen by
studying activations in SPM that were contrasted using the uncorrected
datasets. As there is no real signal to compare to, we estimated the noise
variance σ2n by studying parts of the data with minimal activations (i.e.
x(t) ≈ 0 at rest). These parts of the signal were extracted by using the
stimulus timing information. Due to the post-stimulus effects of the hemo-
dynamic responses, a two-second period of adaption was excluded after the
end of each stimulus. However, the hemodynamic response will not be ex-
actly zero after the two-second period, because before the response returns
to zero, there is a delay and an undershoot effect, which typically last more
than a couple of seconds (Handwerker et al., 2004).

Thus, as the neural activation induces a delayed hemodynamic response,
the activation still has a small contribution to the variance estimates. To di-
minish this, we added a windowed de-trending smoothing filter to the estima-
tion of the standard deviation of unexplained noise from the in-between ac-
tivation data. The de-trending was implemented through a Savitzky-Golay
smoothing filter (with polynomial degree one, and a window size of 5.1 s).
The de-trending deals with some of the remaining hemodynamic effects and
scanner drifting, but remaining post-stimulus undershoot effects still have
a small contribution to the signal. With long TR, the filtering might cause
slight underestimation of the noise, which may also have an effect to the
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results. The comparison is however fair, because the same benchmarking is
used for all the methods.

An alternative way to study the remaining white measurement noise
would be to use a linear model for modeling the HRF convolved response in
the brain (as is done in SPM). This would however result in studying the
model residual rather than the actual measurement noise.
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