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Comparison of Different Types of Adaptive Networks

Various types of adaptive networks have been discussed in the context of stimulus discrimination by the
olfactory bulb. In an early model for the restructuring of the inhibitory bulbar network by neurogenesis
granule cells were not treated explicitly. Instead, inhibition was assumed to be pairwise and symmetric
between mitral cells with a strength that was taken as a proxy for the number of granule cells connecting
the two mitral cells [1]. The mitral cells were described with a linear firing-rate model. The inhibitory
weight of the connection between two mitral cells was increased proportional to the pairwise scalar product
of the activity of these two mitral cells across a stimulus ensemble. Since the activities represented
deviations from the mean they could also be negative in this model.

From a more general perspective it has been shown that a network can make stimulus representations
orthogonal if it normalizes the activity of each output channel (i.e. the activity of each mitral cell) across
the stimulus ensemble and orthogonalizes the output activities [2]. In a recurrent inhibitory network with
symmetric connectivity this is achieved if the inhibition between the channels is essentially given by the
square-root of the matrix of pairwise scalar products of the input activities.

For the honey bee olfactory system experimental data are available for the inputs as well as the
outputs of the antennal lobe. These were employed in a computational model of the antennal lobe to
show that the pattern transformation performed by the antennal lobe is better captured by models in
which the connectivity of the inhibitory network is based on the correlations between the glomerular
inputs than by models with random or spatially local connectivity [3].

Motivated by these different types of adaptive networks we compare the ability of a number of different
adaptive recurrent networks to decorrelate the natural stimuli of Fig.2. In all cases only the principal
neurons are retained and their dynamics are given by the linear rate model
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with an effective inhibitory connectivity matrix W . We use S = {S
(α)
i , α = 1 . . . Ns} to denote the

ensemble of Ns stimuli in terms of a matrix in which the columns consist of the stimulus activities. In
our neurogenetic model the spontaneous mitral cell activity Msp modifies the connectivity. In the other

connectivities we incorporate Msp by using an effective stimulus ensemble Ŝ = S+Msp, where Msp is a
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matrix in which all entries are equal to Msp. The connectivity matrices are then given by
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W
(ortho) =

[

1

Γ

(

ŜŜt
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W
(corr)
ij = [r(Si, Sj)]+ Pearson correlation (6)

W
(cov)
ij = [cov(Si, Sj)]+ Covariance. (7)

In each of these connectivities the inhibition between pairs of mitral cells is related to a broadly defined
similarity of their responses to the stimuli in the ensemble. The similarity is, however, assessed in
different ways in each case. Connectivity W

(ng) is obtained from our neurogenesis model (eqs. (3,4,9)
in the main manuscript) with 50 mitral cells. In this model the similarity is measured in terms of

an additive co-activity. In connectivities W
(ortho) and W

(L2) the similarity is measured in terms of a
multiplicative co-activity. The connectivity W

(ortho) stems from the orthogonalizing networks [2], with
the parameter Γ determining the L2-norm of the outputs with w = 1 fixed. Without any attempt to
optimize the performance we choose here Γ = 1. Connectivity W

(L2) is motivated by the algorithm used
in [1]. Connectivity W

(corr) is motivated by the modeling of the antennal lobe network [3]; here r(Si, Sj)
denotes the Pearson correlation between the stimulus activities of glomerulus i and glomerulus j given
the stimulus ensemble S. Analogously, in connectivity W

(cov) cov(Si, Sj) denotes the corresponding

covariance. Writing S instead of Ŝ in W
(corr), W

(cov), and W
(dist) emphasizes the fact that these

connectivities are not sensitive to Msp. The connectivity matrices W
(ortho), W(corr), and W

(cov) are
not guaranteed to have only positive entries. We therefore set any negative entries to 0.

To compare the different connectivities we use two different approaches. Since the decorrelation
performance often improves with increasing inhibition and decreasing output amplitude, we choose the
overall inhibitory weight w for each connectivity such that it generates the same mean output amplitude
as the neurogenesis model. Some connectivities perform, however, optimally at an intermediate inhibitory
strength. Therefore we also consider the dependence of the performance on the inhibitory strength.

We characterize the different networks in two ways. We determine the similarity of the connectivities
directly using a scaled distance D between them, which we define as
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Then we assess the performance of the networks in terms of the correlations of their outputs given the
stimulus ensemble S.

The distance measure D reveals that the co-activity based connectivities W(ng), W(ortho), and W
(L2)

are quite similar to each other for both values of Msp (Fig.S1). The relationship among the other

connectivities is not as clear. For Msp = 0 it appears as if W(dist) and W
(corr) also formed a cluster.

However, it does not persist for Msp = 1 (Fig.S1B) and other values of the mean output amplitude (not

shown). Similarly, for some output amplitudes W
(corr) and W

(cov) are much closer to each other than
for the output amplitudes used in Fig.S1.



3

 

 

1 2 3 4 5 6

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 

1 2 3 4 5 6

1

2

3

4

5

6

0.2

0.4

0.6

0.8

1

1.2

1.4A B

Figure S 1. Similarity of connectivities. Matrix of scaled pairwise distance D between the
connectivities (2-7) for Msp = 0 with coupling strengths w = (0.002, 1.35, 0.32, 0.13, 0.85, 70) (A) and
Msp = 1 with coupling strengths w = (0.002, 0.31, 0.012, 0.105, 0.8, 50) (B). In the distance matrix and

the list of coupling strengths w the order of the connectivities is W(ng), W(ortho), W(L2), W(dist),
W

(corr), W(cov). With these synaptic weights w the mean output amplitude is the same for all

connectivities, ¯̄M ≡ (NsNm)
−1 ∑

i,α M
(α)
i = 0.0265 for Msp = 0 and ¯̄M = 0.15 for Msp = 1. For W(cov)

and Msp = 1 the output amplitude had to be chosen larger, ¯̄M = 0.189, to avoid dynamical instability

in (1). Parameters for the runs generating W
(ng): Nm = 50, γ = 20, R0 = 0.1, nconnect = 4, β = 3.9,

w = 0.002, A: Msp = 0, Gmin = 0.12, B: Msp = 1, Gmin = 0.6.

To assess the decorrelation performance of the networks directly we determine the correlations in the
outputs for the stimuli to which they are adapted. Without the spontaneous activity of the mitral cells,
Msp = 0, each of the connectivities (2-7) is able to reduce the correlation of the representations of the
highly similar stimuli (black bars in Fig.S2A), albeit to very different degrees. This is not the case for
the less correlated stimuli. Consistent with the similarity of the co-activity based connectivities seen in
Fig.S1, W(ng) , W(ortho), and W

(L2) perform similarly and quite well for all stimuli. The connectivities
W

(dist), W(corr), and W
(cov), however, only decorrelate the representations of the highly similar stimuli;

for the less related inputs their performance is very poor; in fact, on average the outputs of W(corr) and
W

(cov) are more correlated than their inputs (Fig.S2B).
For non-zero spontaneous activity, Msp = 1, most connectivities perform worse, in particular for

the highly similar stimuli. Nevertheless, the co-activity based connectivities perform still quite well
overall. The performance of W(corr), W(cov), and W

(dist), however, is poor. Even the representations
of the highly similar stimuli are not decorrelated any more. This reflects, in part, the fact that these
adaptation schemes do not account for the spontaneous mitral cell activity, which effectively corresponds
to a significant mean value in the input activities.

The strikingly poor decorrelation by the correlation-based and the covariance-based network for the
inhibition level used in Fig.S2 raises the question whether their performance could be improved by
optimizing the overall inhibition. We therefore vary for each network the overall inhibition level w while
keeping the network structures fixed as defined by (2-7). For adaptive networks the inhibition level
w affects, in principle, also the training of the network; the network structure is therefore not really
independent of w. However, none of the comparison networks (3-7) are defined via a training algorithm;
for them w is a free parameter. Varying w over a range that induces comparable changes in the output
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Figure S 2. Comparison of the decorrelation performance of adaptive networks. A) Top
correlations r(top) obtained with the connectivities (2-7). B) Mean correlations r̄ obtained with the
connectivities (2-7). Msp = 0 (black), Msp = 1(red). Dashed lines denote the corresponding input
correlations.

amplitude we find that the performance of the co-activity based connectivities improves monotonically
with decreasing amplitude. In Fig.S3 this is shown for the top correlation r(top) for Msp = 0 (black) and

Msp = 1 (red). It also holds for the overall correlation (not shown). The connectivities W
(corr) and

W
(cov) exhibit different behavior. For Msp = 0 they both decorrelate the representations of the highly

similar stimuli for weak inhibition, but as the inhibition is increased the output correlation starts to rise
again. With non-zero spontaneous mitral cell activity the output correlation increases monotonically
already starting from w = 0. We find that the overall correlation r̄ increases monotonically even for
Msp = 0 (not shown). The distance-based connectivity reduces r(top) monotonically for Msp = 0. For
Msp = 1, however, the correlation increases to a maximum before it starts to decrease. Similarly, the
overall correlation r̄ increases initially with increasing inhibition.

The network W
(ortho) is designed to orthogonalize the representation of the stimulus ensemble. Nev-

ertheless, in the situations shown in Fig.S2A and Fig.S3A it does not achieve this goal for the highly

similar stimuli. This is a result of the requirement that the network be purely inhibitory, i.e. W
(ortho)
ij ≥ 0.

Depending on the stimulus ensemble and the desired output amplitudes this restriction limits its perfor-
mance to a variable degree. In other situations essentially perfect decorrelation is obtained [2].

Our investigation of connectivities W(L2) and W
(corr) is motivated by previous work on neurogenesis

[1] and odor processing in the antennal lobe [3]. It should be noted, however, that these connectivities
do not in detail represent the networks investigated in [1, 3]. In [1] the effective weights are updated
according to the L2 scalar product of the mitral cell activities and additional self-inhibition as well as
a total synaptic weight normalization is introduced. In [3] the inhibition is feedforward rather than
recurrent, i.e. it is driven directly by the inputs.

This survey does not aim to represent an exhaustive analysis of the various decorrelation mecha-
nisms. It suggests, however, that co-activity based connectivities like W

(ng) , W(ortho), and W
(L2) are

much more capable to decorrelate stimulus representations under various conditions than correlation- or
covariance-based networks.
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Figure S 3. Dependence of the decorrelation of the highly similar stimuli on the overall
weight w. Black: Msp = 0, red: Msp = 1. Solid lines r(top), dashed lines: mean amplitude.
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