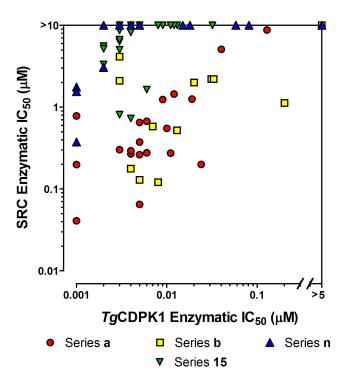
Development of *Toxoplasma gondii* Calcium-Dependent Protein Kinase 1 (*Tg*CDPK1) Inhibitors with Potent Anti-*Toxoplasma* Activity

Supporting Information

Steven M. Johnson,¹ Ryan C. Murphy,¹ Jennifer A. Geiger,⁴ Amy E. DeRocher,⁴ Zhongsheng Zhang,³ Kayode K. Ojo,² Eric T. Larson,³ B. Gayani K. Perera,¹ Edward J. Dale,¹ Panqing He,² Molly C. Reid,² Anna M.W. Fox,² Natascha R. Mueller,² Ethan A. Merritt,³ Erkang Fan,³ Marilyn Parsons,⁴,⁵ Wesley C. Van Voorhis,²* Dustin J. Maly¹*

¹Department of Chemistry, University of Washington, Seattle, Washington, USA. ²Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA. ³Department of Biochemistry, University of Washington, Seattle, Washington, USA. ⁴Seattle Biomedical Research Institute, Seattle, Washington, USA, ⁵Department of Global Health, University of Washington, Seattle, Washington, USA.

Correspondence should be addressed to: DJM (maly@chem.washington.edu) or WCVV (wesley@uw.edu).


Table of Contents:

Supporting Information References	43			
Synthesis and characterization of final compounds	14			
Synthesis and characterization of intermediate compounds				
General Synthetic Procedures	6			
Figure S2: <i>T. gondii</i> proliferation EC ₅₀ shifts with G128M- <i>Tg</i> CDPK1	5			
Figure S1: Comparison of SRC and <i>Tg</i> CDPK1 enzymatic IC ₅₀ results	4			
Tables S1: IC ₅₀ -fold differences between human kinases and <i>Tg</i> CDPK1	3			


Table S1: IC_{50} -fold differences between human kinases and TgCDPK1.

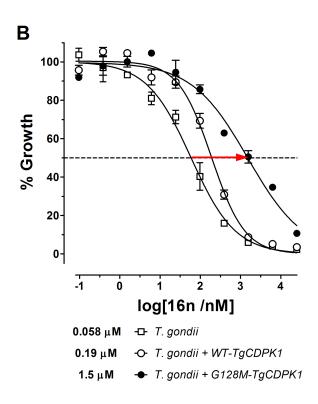

	Enzymatic IC ₅₀ -Fold Differences (Kinase IC ₅₀ / TgCDPK1 IC ₅₀)								
Compound	TgCDPK1	SRC	ABL	LCK	p38 lpha	EPHA3	CSK	EGFR	
14a	1	110	140	13	1700	260	440	85	
14n	1	2000	2000	120	2000	2000	2000	2000	
15a	1	75	340	10	2000	750	630	140	
15h	1	2300	4200	50	4200	4200	4200	4200	
15n	1	4000	4000	380	4000	4000	4000	4000	
150	1	3400	1600	1100	3400	3400	3400	3400	
16n	1	2900	2900	2900	2900	2900	2900	2900	

Figure S1: Correlation between SRC and TgCDPK1 enzymatic IC₅₀ results. The solid lines at IC₅₀ >10 and >5 μ M represent the upper detection limits for compounds tested in the respective assays.

Figure S2: Correlation of proliferation EC₅₀ curves between native *T. gondii* (open squares) and parasites expressing either wild type TgCDPK1 (open circles) or the drug resistant G128M-TgCDPK1 mutant (closed circles). Expression of the drug resistant G128M-TgCDPK1 mutant rescues cells from the potent anti-proliferative effects of inhibitors **150** (panel A) and **16n** (panel B).

General Synthetic Procedures.

Unless otherwise stated, all chemicals were purchased from commercial suppliers and used without further purification. Reaction progress was monitored by thin-layer chromatography on silica gel 60 F254 coated glass plates (EM Sciences). Chromatography was performed using an IntelliFlash 280 automated flash chromatography system, eluting on pre-packed Varian SuperFlash silica gel columns with hexanes/EtOAc or CH₂Cl₂/MeOH gradient solvent systems. For preparatory HPLC purification, samples were chromatographically separated using a Varian Dynamax Microsorb 100-5 C₁₈ column (250 mm x 21.4 mm), eluting with H₂O/CH₃CN or H₂O/ MeOH gradient solvent systems (+0.05% TFA). The purity of all final compounds was determined by two analytical RP-HPLC methods, using an Agilent ZORBAX SB-C₁₈ (2.1 mm x 150 mm) or Varian Microsorb-MV 100-5 C₁₈ column (4.6 mm x 150 mm), and eluting with either H₂O/CH₃CN or H₂O/ MeOH gradient solvent systems (+0.05% TFA) run over 30 min. Products were detected by UV at λ =254 nm, with all final compounds displaying >95% purity. NMR spectra were recorded on Bruker 300 or 500 MHz spectrometers at ambient temperature. Chemical shifts are reported in parts per million (δ) and coupling constants in Hz. ¹H-NMR spectra were referenced to the residual solvent peaks as internal standards (7.26 ppm for CDCl₃, 2.50 ppm for d_6 -DMSO, and 3.34 ppm for CD₃OD). Mass spectra were recorded with a Bruker Esquire Liquid Chromatograph - Ion Trap Mass Spectrometer. Inhibitors were synthesized through several different routes, as represented in Schemes 1-3. Syntheses of compounds 1b, 3a, 4a, 5a, 10a, 10b, 10n, 11a, 11b, 12a, 14a, 15a, 26, 27, 31, and 32 have been previously reported.^{1,2} All other syntheses and compound characterization data are presented below.

General pyrazolopyrimidine R_2 alkylation procedure:

$$\begin{array}{c|c} \mathsf{NH}_2 & \mathsf{X} & & \mathsf{R_2-X} \\ \mathsf{N} & \mathsf{N} & & & \mathsf{K}_2\mathsf{CO}_3 \text{ or } \mathsf{Cs}_2\mathsf{CO}_3 \\ \hline & \mathsf{DMF}, \, \mathsf{R.T.} \text{ or } \mathsf{Heat} & & \mathsf{N} \\ \mathsf{R}_2 & & & \mathsf{R}_2 & \\ \end{array}$$

X = H, I, or 6-ethoxynaphtyl R_1

The pyrazolopyrimidine (1 eq.), K₂CO₃ or Cs₂CO₃ (1.5-2 equiv), and appropriate **R**₂-halide (1.1 equiv) or **R**₂-mesylate (1.1 equiv) were stirred in dry DMF at room temperature or 80 °C. Upon completion (as monitored by thin layer chromatography), the reaction was extracted into EtOAc and washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was then purified via flash chromatography over silica, eluting with either a hexanes/EtOAc or CH₂Cl₂/MeOH gradient. Product fractions were collected and concentrated to a solid.

General Suzuki coupling procedure:

S6

The respective halide (1 eq.), Na₂CO₃ (2-4 eq.), Pd(PPh₃)₄ (.05 eq.), and appropriate boronic acid or pinacol ester (1-2 eq.) were stirred in dimethoxyethane (DME, 1.5 ml) and water (0.5 ml) and heated in a microwave at 80 °C for one hour. The reaction was then cooled to room temperature, extracted into ethyl acetate, washed with brine, and the organic layer dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was then purified via flash chromatography over silica, eluting with either a hexanes/EtOAc or CH₂Cl₂/MeOH gradient. Product fractions were collected and concentrated to a solid. Further purification, if necessary, was performed via preparatory RP-HPLC, eluting with either a H₂O/CH₃CN or H₂O/MeOH gradient (+0.05% TFA). Product fractions were collected, concentrated, frozen, and lyophilized to a powder. Final compounds were then extracted into EtOAc, washed with sat. NaHCO₃ and brine, dried over Na₂SO₄, filtered, and concentrated to afford the purified product as a solid.

General naphthol alkylation procedure:

The naphthol (1 eq.), K₂CO₃ (1.5-2 equiv), and appropriate alkyl halide (1.1 equiv) were stirred in dry DMF at room temperature or 80°C. Upon completion (as monitored by thin layer chromatography), the reaction was extracted into EtOAc and washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was then purified via flash chromatography over silica, eluting with either a hexanes/EtOAc or CH₂Cl₂/MeOH gradient. Product fractions were collected and concentrated to a solid. Further purification, if necessary, was performed via preparatory RP-HPLC, eluting with either a H₂O/CH₃CN or H₂O/ MeOH gradient (+0.05% TFA). Product fractions were collected, concentrated, frozen, and lyophilized to a powder. For final compounds, this was then extracted into EtOAc, washed with sat. NaHCO₃ and brine, dried over Na₂SO₄, filtered, and concentrated to afford the purified product as a solid.

General boc-deprotection procedure:

The boc-amine is stirred in 50% TFA in CH_2Cl_2 for ~3 h. The reaction was then concentrated and purified via preparatory RP-HPLC, eluting with either a H_2O/CH_3CN or $H_2O/MeOH$ gradient (+0.05% TFA). Product fractions were collected, concentrated, frozen, and lyophilized to a powder. The product was then re-concentrated from 1.25 M HCl in EtOH to afford the final, purified product as a bis-HCl salt.

General reductive alkylation procedure:

The TFA-amine salt (1 eq.) was dissolved in methanol and neutralized with sodium methoxide. A solution containing 2% acetic acid was added with the appropriate aldehyde (5-10 eq.) and stirred at room temperature for 10 min. Sodium cyanoborohydride (5 eq.) was then added and the reaction was left to stir until completion (typically ~2 h). The reaction was then filtered and purified via preparatory RP-HPLC, eluting with either a H₂O/CH₃CN or H₂O/ MeOH gradient (+0.05% TFA). Product fractions were collected and concentrated. The residue was dissolved in a small amount of 2 M HCl in methanol and, after concentration *in vacuo*, the final product was obtained as an HCl salt.

Synthesis and characterization of intermediate compounds:

28: 6-(4-amino-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-3-yl)naphthalen-2-ol.

This compound was synthesized following the *general Suzuki coupling procedure* and using 6-(*tert*-butyldimethylsilyloxy)naphthalen-2-boronic acid as the aryl coupling reagent and **26** as the

aryl-halide. After purification, characterization revealed the loss of the TBMDS protecting group, affording **28** as the free naphthol. 1 H-NMR (300 MHz, CD₃OD) δ 8.25 (s, 1H), 8.05 (s, 1H), 7.81-7.87 (m, 2H), 7.68-7.73 (m, 1H), 7.14-7.21 (m, 2H), 5.15 (septet, 1H, J=6.8 Hz), 1.59 (d, 6H, J=6.8 Hz); MS (ESI) 320.4 m/z [MH $^{+}$], $C_{18}H_{18}N_{5}O$ requires 320.2.

HO
$$\frac{Boc_2O}{CH_2Cl_2}$$
 $\frac{MeSO_2CI, TEA}{CH_2Cl_2}$ $\frac{MeSO_2CI, TEA}{CH_2Cl_2}$ $\frac{MeSO_2CI, TEA}{DMF}$ $\frac{NH_2}{N}$ $\frac{X}{N}$ $\frac{NH_2}{N}$ $\frac{N}{N}$ $\frac{N}{N}$

- **29:** *Tert*-butyl-4-(hydroxymethyl)piperidine-1-carboxylate. Dichloromethane (25 mL) was added to a flask containing 4-piperidinemethanol (2.74 g, 23.8 mmol) and di-*tert*-butyl dicarbonate (5.26 g, 24.1 mmol). The reaction was then stirred for 18 h at ROOM TEMPERATURE under a nitrogen atmosphere. Flash chromatographic purification over silica (CH₂Cl₂/MeOH gradient elution) afforded **29** as a white solid (4.88 g). ¹H-NMR (300 MHz, *d*₆-DMSO) δ 4.44 (t, 1H, *J*=5.3 Hz), 3.86-3.98 (m, 2H), 3.23 (t, 2H, *J*=5.9 Hz), 2.56-2.74 (m, 2H), 1.42-1.66 (m, 3H), 1.38 (s, 9H), 0.88-1.04 (m, 2H); MS (ESI) 238.1 *m/z* [MNa⁺], C₁₁H₂₁NaNO₂ requires 238.1.
- **30:** *Tert*-butyl-4-((methylsulfonyloxy)methyl)piperidine-1-carboxylate. Methanesulfonyl chloride (1.18 mL, 15.2 mmol) was added drop-wise at 0 °C to a stirring mixture of **29** (2.98 g, 13.8 mmol) and triethylamine (3.9 mL, 28 mmol) in dichloromethane (30 mL). After 1 h, the reaction was diluted with dichloromethane and washed with sat. NaHCO₃. The organic layer was dried over Na₂SO₄, filtered, and concentrated. Flash chromatographic purification over silica (Hexanes/EtOAc gradient elution) afforded **30** as a white solid (3.89 g). ¹H-NMR (300 MHz, d_6 -DMSO) δ 4.06 (d, 2H, J=6.4 Hz), 3.90-4.00 (m, 2H), 3.17 (s, 3H), 2.60-2.80 (m, 2H), 1.78-1.92 (m, 1H), 1.58-1.70 (m, 2H), 1.39 (s, 9H), 1.00-1.20 (m, 2H); MS (ESI) 316.3 m/z [MNa⁺], $C_{12}H_{23}NaNO_5S$ requires 316.1.
- **33:** *Tert*-butyl **4-((4-amino-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)piperidine-1-carboxylate.** This compound was synthesized following the *general pyrazolopyrimidine* R_2 *alkylation procedure* and using **31** as the pyrazolopyrimidine scaffold (49.7 mg, 0.368 mmol synthesis of **31** has been previously reported), ^{1, 2} **30** as the R_2 -mesylate (101 mg, 0.344 mmol), and Cs_2CO_3 as base (232 mg, 0.711 mmol) in anhydrous DMF (3.5 mL) at room temperature for 3 days, affording **33** as a white solid (59.5 mg). ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.16 (s, 1H), 8.08 (s, 1H), 4.16 (d, 2H, J=7.0 Hz), 3.82-3.94 (m, 2H), 2.54-2.74 (m, 2H), 1.98-2.12 (m, 1H), 1.34-1.48 (m, 11H), 0.98-1.14 (m, 2H); MS (ESI) 333.4 m/z [MH $^+$], $C_{16}H_{25}N_6O_2$ requires 333.2; HPLC = 97% pure.
- 34: Tert-butyl-4-((4-amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)piperidine-1-carboxylate. This compound was synthesized following the *general pyrazolopyrimidine* R_2 alkylation procedure and using 32 as the pyrazolopyrimidine scaffold (541 mg, 2.07 mmol –

synthesis of **32** has been previously reported), ^{1, 2} **30** as the **R**₂-mesylate (616 mg, 2.10 mmol), and Cs₂CO₃ as base (1.02 g, 3.13 mmol) in anhydrous DMF (11 mL) at 80 °C for 18 h, affording **34** as an orange solid (512 mg). ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.19 (s, 1H), 4.17 (d, 2H, J=7.0 Hz), 3.82-3.94 (m, 2H), 2.56-2.76 (m, 2H), 1.96-2.12 (m, 1H), 1.34-1.48 (m, 11H), 0.96-1.14 (m, 2H); MS (ESI) 459.1 m/z [MH⁺], C₁₆H₂₄IN₆O₂ requires 459.1; HPLC = 97% pure.

35: *Tert*-butyl 4-((4-amino-3-(6-hydroxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)piperidine-1-carboxylate. This compound was synthesized following the *general Suzuki coupling procedure*, using 6-(*tert*-butyldimethylsilyloxy)naphthalen-2-boronic acid as the aryl coupling reagent (148 mg, 0.490 mmol) and **34** as the aryl-halide (161 mg, 0.352 mmol). After purification, characterization revealed the loss of the TBMDS protecting group, affording **35** as the free naphthol (174 mg). 1 H-NMR (300 MHz, d_6 -DMSO) δ 9.90 (s, 1H), 8.26 (s, 1H), 8.06 (s, 1H), 8.01 (s, 1H), 7.82-7.92 (m, 2H), 7.04-7.20 (m, 2H), 4.26 (d, 2H, J=6.9 Hz), 3.84-3.96 (m, 2H), 2.58-2.76 (m, 2H), 2.06-2.20 (m, 1H), 1.46-1.58 (m, 2H), 1.37 (s, 9H), 1.06-1.22 (m, 2H); MS (ESI) 475.3 m/z [MH $^{+}$], C_{26} H₃₁N₆O₃ requires 475.3; HPLC = 92% pure.

36: 1-Acetylpiperidin-4-yl methanesulfonate. Acetic anhydride (2.0 mL, 21 mmol) was added slowly to a stirring mixture of 4-hydroxypiperidine (2.01 g, 19.9 mmol) and triethylamine (6.9 mL, 50 mmol) in dichloromethane (30 mL), then left to stir at room temperature. The following day, methanesulfonyl chloride (2.3 mL, 30 mmol) was slowly added and the reaction was left to stir for an additional day. The reaction was then diluted into EtOAc and washed with sat. NaHCO₃, 1 N HCl, and brine. The organics were dried over Na₂SO₄, filtered, and concentrated. Flash chromatographic purification over silica (CH₂Cl₂/MeOH gradient elution) afforded **36** as an off-white solid (1.40 g). 1 H-NMR (300 MHz, d_6 -DMSO) δ 4.82-4.92 (m, 1H), 3.74-3.84 (m, 1H), 3.56-3.66 (m, 1H), 3.14-3.34 (m, 5H), 1.84-2.02 (m, 5H), 1.50-1.76 (m, 2H); MS (ESI) 222.2 m/z [MH⁺], C_8 H₁₆NO₄S requires 222.1.

37: (1-Acetylpiperidin-4-yl)methyl methanesulfonate. Acetic anhydride (1.20 mL, 12.7 mmol) was added slowly to a stirring mixture of 4-piperidinemethanol (1.39 g, 12.0 mmol) and triethylamine (4.2 mL, 30 mmol) in dichloromethane (20 mL), then left to stir at room temperature. The following day, methanesulfonyl chloride (1.40 mL, 18.1 mmol) was slowly added and the reaction was left to stir for 3 additional days. The reaction was then diluted into EtOAc and washed with sat. NaHCO₃, 1 N HCl, and brine. The organics were dried over Na₂SO₄, filtered, and concentrated. Flash chromatographic purification over silica (CH₂Cl₂/MeOH gradient elution) afforded 37 as a pale-amber syrup (1.70 g). ¹H-NMR (300 MHz, d_6 -DMSO) δ 4.32-4.42 (m, 1H), 4.07 (d, 2H, J=6.3 Hz), 3.76-3.88 (m, 1H), 3.17 (s, 3H), 2.94-3.06 (m, 1H), 2.44-2.56 (m, 1H), 1.86-2.02 (m, 4H), 1.60-1.74 (m, 2H), 0.94-1.24 (m, 2H); MS (ESI) 236.3 m/z [MH⁺], C₉H₁₈NO₄S requires 236.1.

38: 1-(4-(4-Amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)ethanone. This compound was synthesized following the *general pyrazolopyrimidine* R_2 *alkylation procedure* and using **32** as the pyrazolopyrimidine scaffold (543 mg, 2.08 mmol), **36** as the R_2 -mesylate (508 mg, 2.29 mmol), and Cs_2CO_3 as base (1.01 g, 3.10 mmol) in anhydrous DMF (10 mL) at 80 °C for 18 h, affording **38** as a pale-yellow solid (164 mg). ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.2 (s, 1H), 4.82-4.94 (m, 1H), 4.42-4.52 (m, 1H), 3.88-3.98 (m, 1H), 3.16-3.32 (m, 1H), 2.68-2.80 (m, 1H), 2.05 (s, 3H), 1.80-2.00 (m, 2H), 1.14-1.26 (m, 2H); MS (ESI) 387.3 m/z [MH⁺], $C_{12}H_{16}IN_6O$ requires 387.0; HPLC = 100% pure.

39: 1-(4-((4-amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)piperidin-1-yl)ethanone. This compound was synthesized following the *general pyrazolopyrimidine* R_2 *alkylation procedure* and using **32** as the pyrazolopyrimidine scaffold (604 mg, 2.31 mmol), **37** as the R_2 -mesylate (610 mg, 2.59 mmol), and Cs_2CO_3 as base (1.14 g, 3.49 mmol) in anhydrous DMF (12 mL) at 80°C for 18 h, affording **39** as a yellow-orange solid (607 mg). ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.20 (s, 1H), 4.26-4.36 (m, 1H), 4.17 (d, 2H, J=7.0 Hz), 3.70-3.80 (m, 1H), 2.88-3.00 (m, 1H), 2.04-2.18 (m, 1H), 1.95 (s, 3H), 1.42-1.52 (m, 2H), 0.94-1.24 (m, 3H); MS (ESI) 401.4 m/z [MH⁺], $C_{13}H_{18}IN_6O$ requires 401.1; HPLC = 100% pure.

40: 1-(Methylsulfonyl)piperidin-4-yl methanesulfonate. Methanesulfonyl chloride (4.6 mL, 59 mmol) was added slowly to a stirring mixture of 4-hydroxypiperidine (1.98 g, 19.6 mmol) and triethylamine (6.9 mL, 50 mmol) in dichloromethane (40 mL), then left to stir at room temperature. After 18 h, the reaction was diluted into EtOAc and washed with sat. NaHCO₃, 1 N HCl, and brine. The organics were dried over Na₂SO₄, filtered, and concentrated to afford **40** as a white powder (4.67 g). ¹H-NMR (300 MHz, *d*₆-DMSO) δ 4.78-4.88 (m, 1H), 3.23-3.33 (m, 2H),

3.22 (s, 3H), 3.08-3.18 (m, 2H), 2.90 (s, 3H), 1.94-2.06 (m, 2H), 1.76-1.88 (m, 2H); MS (ESI) $258.1 \text{ m/z} [\text{MH}^+]$, $C_7H_{16}NO_5S_2$ requires 258.1.

41: (1-(Methylsulfonyl)piperidin-4-yl)methyl methanesulfonate. Methanesulfonyl chloride (1.21 mL, 15.6 mmol) was added slowly to a stirring mixture of 4-piperidinemethanol (722 mg, 6.27 mmol) and triethylamine (1.85 mL, 13.3 mmol) in dichloromethane (20 mL), then left to stir at room temperature. After 18 h, the reaction was diluted into EtOAc and washed with sat. NaHCO₃, 1 N HCl, and brine. The organics were dried over Na₂SO₄, filtered, and concentrated. Flash chromatographic purification over silica (CH₂Cl₂/MeOH gradient elution) afforded **41** as a white powder (1.20 g). ¹H-NMR (300 MHz, d_6 -DMSO) δ 4.10 (d, 2H, J=6.1 Hz), 3.52-3.62 (m, 2H), 3.18 (s, 3H), 2.85 (s, 3H), 2.70 (m, 2H), 1.72-1.84 (m, 3H), 1.20-1.36 (m, 2H); MS (ESI) 272.1 m/z [MH⁺], $C_8H_{18}NO_5S_2$ requires 272.1.

42: 3-Iodo-1-(1-(methylsulfonyl)piperidin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general pyrazolopyrimidine* R_2 *alkylation procedure* and using **32** as the pyrazolopyrimidine scaffold (537 mg, 2.06 mmol), **40** as the R_2 -mesylate (557 mg, 2.16 mmol), and Cs_2CO_3 as base (1.04 g, 3.18 mmol) in anhydrous DMF (10 mL) at 80°C for 18 h, affording **42** as a pale-yellow solid (310 mg). ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.20 (s, 1H), 4.68-4.84 (m, 1H), 3.64-3.74 (m, 2H), 2.90-3.06 (m, 5H), 1.94-2.20 (m, 4H); MS (ESI) 423.2 m/z [MH⁺], $C_{11}H_{16}IN_6OS$ requires 423.0; HPLC = 100% pure.

43: 3-Iodo-1-((1-(methylsulfonyl)piperidin-4-yl)methyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general pyrazolopyrimidine* R_2 *alkylation procedure* and using **32** as the pyrazolopyrimidine scaffold (538 mg, 2.06 mmol), **41** as the R_2 -mesylate (590 mg, 2.17 mmol), and C_2CO_3 as base (1.06 g, 3.26 mmol) in anhydrous DMF (10 mL) at 80 °C for 18 h, affording **43** as a pale-yellow solid (446 mg). ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.20 (s, 1H), 4.21 (d, 2H, J=7.0 Hz), 3.46-3.56 (m, 2H), 2.82 (s, 3H), 2.58-2.72 (m, 2H), 1.94-2.10 (m, 1H), 1.50-1.64 (m, 2H), 1.14-1.34 (m, 2H); MS (ESI) 437.1 m/z [MH⁺], $C_{12}H_{18}IN_6O_2S$ requires 437.0; HPLC = 100% pure.

44: 3-(6-Ethoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. Compound **32** (1 eq.), Na₂CO₃ (4 eq.), Pd(PPh₃)₄ (.01 eq.), and 6-ethoxynaphthalene-2-boronic acid (2 eq.) were stirred in dimethoxyethane (DME, 0.5 ml) and water (0.8 ml) and reacted in a microwave at 110°C for one hour. The reaction was then cooled to room temperature, extracted into ethyl acetate, and washed with 0.02 N HCl and brine. The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude product is then purified via flash chromatography

over silica, eluting with CH₂Cl₂/MeOH gradient. Product fractions were collected and further recrystallized in EtOAc to afford **44** as a white solid. 1 H-NMR (500 MHz, CD₃OD) δ 8.39 (s, 1H), 8.10 (d, 1H, J=1.4 Hz), 7.98 (d, 1H, J=8.2 Hz), 7.86 (d, 1H, J=8.4 Hz), 7.72 (dd,1H, J=1.9, 8.6 Hz), 7.35 (d, 1H, J=2.4 Hz), 7.26 (dd, 1H, J=2.5, 8.6 Hz), 4.42 (d, 2H, J=6.6 Hz), 1.49 (t, 3H, J=7.0 Hz). MS (ESI) 306.5 m/z [MH $^{+}$] C₁₇H₁₆N₅O requires 306.1.

45: 6-Bromo-2-ethoxyquinoline. 6-Bromo-2-chloroquinoline (133 mg, 0.550 mmol) and sodium ethoxide (341 mg, 5.01 mmol) were stirred in a 50% mixture of EtOH in 1,4-dioxane (6 mL) and reacted in a microwave at 100 °C for 2 h. The reaction was extracted into EtOAc and the organics were washed with H_2O , dried over Na_2SO_4 , filtered, and concentrated. Flash chromatographic purification over silica (hexanes/EtOAc gradient elution) afforded **45** as a white solid (112 mg). 1H -NMR (300 MHz, d_6 -DMSO) δ 8.22 (d, 1H, J=8.8 Hz), 8.15 (d, 1H, J=2.2 Hz), 7.76 (dd, 1H, J=2.3, 8.9 Hz), 7.68 (d, 1H, J=8.9 Hz), 7.05 (d, 1H, J=8.9 Hz), 4.45 (q, 2H, J=7.1 Hz), 1.37 (t, 3H, J=7.1 Hz); MS (ESI) 252.2/254.1 m/z [MH $^+$], $C_{11}H_{11}$ BrNO requires 252.0/254.0; HPLC = 98% pure.

46: 2-Ethoxy-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoline.

Bis(pinacolato)diboron (134 mg, 0.529 mmol), **45** (103 mg, 0.407 mmol), PdCl₂(dppf)CH₂Cl₂ (18.8 mg, 0.0230 mmol), and KOAc (132 mg, 1.34 mmol) were stirred in anhydrous DMF (3 mL) at 80 °C for 5 h. The reaction was extracted into EtOAc and the organics were washed with H₂O, dried over Na₂SO₄, filtered, and concentrated. Flash chromatographic purification over silica (CH₂Cl₂/MeOH gradient elution) afforded **46** as a white solid (51.1 mg). ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.31 (d, 1H, J=8.8 Hz), 8.26 (s, 1H), 7.86 (dd, 1H, J=1.4, 8.3 Hz), 7.71 (d, 1H, J=8.4 Hz), 7.01 (d, 1H, J=8.8 Hz), 4.47 (q, 2H, J=7.1 Hz), 1.38 (t, 3H, J=7.1 Hz), 1.33 (s, 12H); MS (ESI) 300.3 m/z [MH⁺], C₁₇H₂₃BNO₃ requires 300.2.

47: 2-Bromo-6-isobutoxynaphthalene. 6-Bromo-2-naphthol (986 mg, 4.42 mmol), 1-iodo-2-methylpropane (0.76 mL, 6.6 mmol), and K₂CO₃ (1.27 g, 9.19 mmol) were stirred in DMF at

room temperature overnight, then at 80 °C for 6 h. The reaction was extracted into CH₂Cl₂ and the organics were washed with 1 N NaOH, dried over Na₂SO₄, filtered, and concentrated. The syrup was triturated with H₂O and the solid was filtered off, rinsed with H₂O, and dissolved into CH₂Cl₂. The organics were dried over Na₂SO₄, filtered, and concentrated to afford **47** as a brown solid (345 mg). 1 H-NMR (300 MHz, d_6 -DMSO) δ 8.10 (d, 1H, J=1.8 Hz), 7.81 (d, 1H, J=9.0 Hz), 7.77 (d, 1H, J=8.8 Hz), 7.55 (dd, 1H, J=2.0, 8.7 Hz), 7.34 (d, 1H, J=2.4 Hz), 7.22 (dd, 1H, J=2.5, 9.0 Hz), 3.86 (d, 2H, J=6.5 Hz), 2.02-2.16 (m, 1H), 1.02 (d, 6H, J=6.7 Hz).

48: 2-(6-Isobutoxynaphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane.

Bis(pinacolato)diboron (255 mg, 1.00 mmol), **47** (209 mg, 0.796 mmol), PdCl₂(dppf)CH₂Cl₂ (32.5 mg, 0.0398 mmol), and KOAc (158 mg, 1.60 mmol) were stirred in anhydrous DMF (5 mL) at 100 °C for 2 h under a nitrogen atmosphere. The reaction was extracted into EtOAc and the organics were washed with H₂O, dried over Na₂SO₄, filtered, and concentrated. Flash chromatographic purification over silica (hexanes/EtOAc gradient elution) afforded **48** as a white solid (186 mg). ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.22 (s, 1H), 7.91 (d, 1H, J=9.0 Hz), 7.77 (d, 1H, J=8.3 Hz), 7.64 (d, 1H, J=8.2 Hz), 7.30 (d, 1H, J=2.2 Hz), 7.17 (dd, 1H, J=2.4, 8.9 Hz), 3.87 (d, 2H, J=6.5 Hz), 2.02-2.16 (m, 1H), 1.32 (s, 12H), 1.02 (d, 6H, J=6.7 Hz); MS (ESI) 327.4 m/z [MH⁺], C₂₀H₂₈BO₃ requires 327.2.

Synthesis and characterization of final compounds:

1n: 1-(Piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general boc-deprotection procedure* and using **33** as the boc-protected piperidine precursor. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.45 (s, 1H), 8.43 (s, 1H), 4.28 (d, 2H, J=7.0 Hz), 3.16-3.26 (m, 2H), 2.72-2.88 (m, 2H), 2.12-2.26 (m, 1H), 1.56-1.68 (m, 2H), 1.32-1.50 (m, 2H); MS (ESI) 233.1 m/z [MH⁺], C_{11} H₁₇N₆ requires 233.2; HPLC = 100% pure.

2b: 1-Tert-butyl-3-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using phenylboronic acid as the aryl coupling reagent and **27** as the aryl-halide. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.24 (s, 1H), 7.62-7.68 (m, 2H), 7.46-7.58 (m, 3H), 1.75 (s, 9H); MS (ESI) 268.2 m/z [MH $^{+}$], C_{15} H₁₈N₅ requires 268.2; HPLC-1 = 98% pure, HPLC-2 = 100% pure.

2n: 3-Phenyl-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using phenylboronic acid as the aryl coupling reagent and **34** as the aryl-halide, followed by the *general boc-deprotection procedure*. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.46 (s, 1H), 7.64-7.72 (m, 2H), 7.50-7.62 (m, 3H), 4.33 (d, 2H, J=6.9 Hz), 3.18-3.28 (m, 2H), 2.74-2.90 (m, 2H), 2.18-2.32 (m, 1H), 1.64-1.76 (m, 1H), 1.38-1.54 (m, 2H); MS (ESI) 309.3 m/z [MH $^{+}$], C_{17} H₂₁N₆ requires 309.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

3b: 1-*Tert*-butyl-3-m-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 3-methylphenylboronic acid as the aryl coupling reagent and **27** as the aryl-halide. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.23 (s, 1H), 7.40-7.48 (m, 3H), 7.26-7.34 (m, 1H), 2.40 (s, 3H), 1.75 (s, 9H); MS (ESI) 282.2 m/z [MH $^{+}$], C_{16} H₂₀N₅ requires 282.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

5b: 1-Tert-butyl-3-(4-methoxy-3-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 4-methoxy-3-methylphenylboronic acid as the aryl coupling reagent and **27** as the aryl-halide. 1 H-NMR (300 MHz, d_6 -DMSO) δ 8.22 (s, 1H), 7.38-7.46 (m, 2H), 7.06-7.12 (m, 1H), 3.85 (s, 3H), 2.23 (s, 3H), 1.74 (s, 9H); MS (ESI) 312.2 m/z [MH $^{+}$], C_{17} H₂₂N₅O requires 312.2; HPLC-1 = 100% pure, HPLC-2 = 97% pure.

5n: 3-(4-Methoxy-3-methylphenyl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 4-methoxy-3-methylphenylboronic acid as the aryl coupling reagent and **34** as the arylhalide, followed by the *general boc-deprotection procedure*. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.45 (s, 1H), 7.42-7.50 (m, 2H), 7.13 (d, 1H, J=8.3 Hz), 4.31 (d, 2H, J=6.9 Hz), 3.87 (s, 3H), 3.18-3.28 (m, 2H), 2.74-2.90 (m, 2H), 2.18-2.30 (m, 4H), 1.64-1.74 (m, 2H), 1.36-1.54 (m, 2H); MS (ESI) 353.4 m/z [MH $^{+}$], C_{19} H₂₅N $_{6}$ O requires 353.2; HPLC-1 = 100% pure, HPLC-2 = 97% pure.

6a: 3-(1H-Indol-2-yl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using N-boc-indole-2-boronic acid as the aryl coupling reagent and **26** as the aryl-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, CDCl₃) δ 8.95 (br s, 1H), 8.40 (s, 1H), 7.65-7.71 (m, 1H), 7.45-7.50 (m, 1H), 7.27-7.32 (m, 1H), 7.13-7.20 (m, 1H), 6.88-6.92 (s, 1H), 5.20

(septet, 1H, J=6.8 Hz), 1.62 (d, J=6.8 Hz, 6H); MS (ESI) 293.4 m/z [MH⁺], $C_{16}H_{17}N_6$ requires 293.2; HPLC-1 = 97% pure, HPLC-2 = 98% pure.

6n: 3-(1H-Indol-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using N-boc-indole-2-boronic acid as the aryl coupling reagent and **34** as the aryl-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, CD₃OD) δ 8.34 (s, 1H), 7.64-7.68 (m, 1H), 7.46-7.51 (m, 1H), 7.21-7.27 (m, 1H), 7.08-7.15 (m, 1H), 6.92 (m, 1H), 4.44 (d, 2H, J=6.9 Hz), 3.37-3.45 (m, 2H), 2.92-3.04 (m, 2H), 2.36-2.47 (m, 1H), 1.87-1.97 (m, 2H), 1.54-1.66 (m, 2H); MS (ESI) 348.4 m/z [MH⁺], C₁₉H₂₂N₇ requires 348.2; HPLC-1 = 96% pure, HPLC-2 = 98% pure.

7a: 3-(4-Chloro-1H-indol-2-yl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 4-chloro-N-boc-indole-2-boronic acid as the aryl coupling reagent and **26** as the aryl-halide, followed by the *general boc-deprotection procedure*. 1 H-NMR (300 MHz, CDCl₃) δ 9.10 (br s, 1H), 8.41 (s, 1H), 7.35-7.39 (m, 1H), 7.16-7.21 (m, 2H), 6.96-6.99 (s, 1H), 5.21 (septet, 1H, *J*=6.8 Hz), 1.62 (d, *J*=6.8 Hz, 6H); MS (ESI) 327.8 m/z [MH⁺], C_{16} H₁₆ClN₆ requires 327.1; HPLC-1 = 100% pure, HPLC-2 = 99% pure.

7n: 3-(4-Chloro-1H-indol-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 4-chloro-N-boc-indole-2-boronic acid as the aryl coupling reagent and 34 as the arylhalide, followed by the *general boc-deprotection procedure*. 1 H-NMR (300 MHz, CD₃OD) δ 8.34 (s, 1H), 7.45-7.48 (m, 1H), 7.17-7.22 (m, 1H), 7.08-7.15 (m, 1H), 6.96 (m, 1H), 4.44 (d, 2H, J=6.9 Hz), 3.37-3.45 (m, 2H), 2.92-3.04 (m, 2H), 2.36-2.47 (m, 1H), 1.87-1.97 (m, 2H), 1.54-1.66 (m, 2H); MS (ESI) 382.9 m/z [MH $^{+}$], C_{19} H₂₁ClN₇ requires 382.2; HPLC-1 = 98% pure, HPLC-2 = 99% pure.

8a: 1-Isopropyl-3-(1-methyl-1H-indol-5-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 1-methylindole-5-boronic acid pinacol ester as the aryl coupling reagent and **26** as the aryl-halide. 1 H-NMR (300 MHz, CD₃OD) δ 8.23 (s, 1H), 7.73 (dd, 1H, J=0.6, 8.1 Hz), 7.67-7.69 (m, 1H), 7.34 (dd, 1H, J=1.5, 8.1 Hz), 7.28 (d, 1H, J=3.1 Hz), 6.52 (dd, 1H, J=0.9, 3.1 Hz), 5.14 (septet, 1H, J=6.7 Hz), 3.87 (s, 3H), 1.58 (d, 6H, J=6.7 Hz); MS (ESI) 307.2 m/z [MH⁺], C_{17} H₁₉N₆ requires 307.2; HPLC-1 = 99% pure, HPLC-2 = 99% pure.

8b: 1-*Tert*-butyl-3-(1-methyl-1H-indol-5-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 1-methylindole-5-boronic acid pinacol ester as the aryl coupling reagent and **27** as the aryl-halide. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.23 (s, 1H), 7.81 (s, 1H), 7.61 (d, 1H, J=8.5 Hz), 7.38-7.46 (m, 2H), 6.55 (d, 1H, J=3.0 Hz), 3.85 (s, 3H), 1.76 (s, 9H); MS (ESI) 321.4 m/z [MH $^{+}$], C_{18} H₂₁N₆ requires 321.2; HPLC-1 = 97% pure, HPLC-2 = 100% pure.

9b: 1-*Tert*-butyl-3-(1-methyl-1H-indazol-5-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 1-methylindazole-5-boronic acid as the aryl coupling reagent and **27** as the aryl-halide. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.48 (s, 1H), 8.18 (s, 1H), 8.03 (s, 1H), 7.83 (d, 1H, J=8.7 Hz), 7.68 (dd, 1H, J=1.4, 8.7 Hz), 4.11 (s, 3H), 1.78 (s, 9H); MS (ESI) 322.3 m/z [MH $^{+}$], C_{17} H₂₀N₇ requires 322.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

9n: 3-(1-Methyl-1H-indazol-5-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 1-methylindazole-5-boronic acid as the aryl coupling reagent and **34** as the aryl-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.48 (s, 1H), 8.19 (s, 1H), 8.04 (s, 1H), 7.84 (d, 1H, J=8.7 Hz), 7.69 (dd, 1H, J=1.4, 8.7 Hz), 4.34 (d, 2H, J=6.8 Hz), 4.12 (s, 3H), 3.18-3.28 (m, 2H), 2.74-2.92 (m, 2H), 2.20-2.32 (m, 1H), 1.66-1.76 (m, 2H), 1.40-1.56 (m, 2H); MS (ESI) 363.3 m/z [MH $^+$], $C_{19}H_{23}N_8$ requires 363.2; HPLC-1 = 100% pure, HPLC-2 = 99% pure.

11n: 3-(Naphthalen-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 2-naphthaleneboronic acid as the aryl coupling reagent and 34 as the aryl-halide, followed by the *general boc-deprotection procedure*. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.47 (s, 1H), 8.21 (s,

1H), 8.10 (d, 1H, J=8.5 Hz), 8.00-8.07 (m, 2H), 7.82 (dd, 1H, J=1.6, 8.5 Hz), 7.58-7.65 (m, 2H), 4.37 (d, 2H, J=6.9 Hz), 3.20-3.30 (m, 2H), 2.76-2.92 (m, 2H), 2.22-2.35 (m, 1H), 1.67-1.78 (m, 2H), 1.40-1.57 (m, 2H); MS (ESI) 359.3 m/z [MH⁺], $C_{21}H_{23}N_6$ requires 359.2; HPLC-1 = 99% pure, HPLC-2 = 99% pure.

12n: 1-(Piperidin-4-ylmethyl)-3-(quinolin-3-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 3-quinolineboronic acid as the aryl coupling reagent and **34** as the aryl-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, d_6 -DMSO) δ 9.30 (d, 1H, J=2.0 Hz), 8.9 (s, 1H), 8.60 (s, 1H), 8.25 (dd, 2H, J=3.9, 8.3 Hz), 8.00 (dt, 1H, J=1.2, 7.0 Hz), 7.82 (t, 1H, J=7.9 Hz), 4.41 (d, 2H, J=6.9 Hz), 3.18-3.28 (m, 2H), 2.74-2.92 (m, 2H), 2.22-2.36 (m, 1H), 1.66-1.78 (m, 2H), 1.46-1.62 (m, 2H), 1.10-1.30 (m, 1H); MS (ESI) 360.3 m/z [MH $^+$], C_{20} H $_{22}$ N $_7$ requires 360.2; HPLC-1 = 98% pure, HPLC-2 = 100% pure.

13b: 1-*Tert*-butyl-3-(quinolin-6-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using quinoline-6-boronic acid pinacol ester as the aryl coupling reagent and **27** as the aryl-halide. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 9.17 (dd, 1H, J=1.3, 4.5 Hz), 8.86 (d, 1H, J=8.1 Hz), 8.54 (s, 1H), 8.42 (d, 1H, J=1.6 Hz), 8.36 (d, 1H, J=8.7 Hz), 8.20 (dd, 1H, J=1.8, 8.8 Hz), 7.88 (dd, 1H, J=4.7, 8.3 Hz), 1.81 (s, 9H); MS (ESI) 319.3 m/z [MH $^{+}$], C_{18} H₁₉N₆ requires 319.2; HPLC-1 = 99% pure, HPLC-2 = 100% pure.

13n: 1-(Piperidin-4-ylmethyl)-3-(quinolin-6-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using quinoline-6-boronic acid pinacol ester as the aryl coupling reagent and **34** as the aryl-halide, followed by the *general boc-deprotection procedure*. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 9.09 (d, 1H, J=4.0 Hz), 8.73 (d, 1H, J=7.9 Hz), 8.48 (s, 1H), 8.37 (s, 1H), 8.29 (d, 1H, J=8.8 Hz), 8.16 (d, 1H, J=8.9 Hz), 7.74-7.82 (m, 1H), 4.38 (d, 2H, J=6.8 Hz), 3.20-3.30 (m, 2H), 2.76-2.92 (m, 2H), 2.22-2.34 (m, 1H), 1.66-1.78 (m, 2H), 1.40-1.58 (m, 2H); MS (ESI) 360.4 m/z [MH $^{+}$], C_{20} H $_{21}$ N $_{7}$ requires 360.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

14b: 1-*Tert*-butyl-3-(6-methoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 6-methoxynaphthalene-2-boronic acid as the aryl coupling reagent and **27** as the aryl-halide. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.25 (s, 1H), 8.10 (s, 1H), 7.92-8.00 (m, 2H), 7.75 (dd, 1H, J=1.6, 8.5 Hz), 7.41 (d, 1H, J=2.4 Hz), 7.23 (dd, 1H, J=2.5, 9.0 Hz), 3.91 (s, 3H), 1.78 (s, 9H); MS (ESI) 348.3 m/z [MH $^{+}$], C_{20} H₂₂N₅O requires 348.2; HPLC-1 = 97% pure, HPLC-2 = 99% pure.

14n: 3-(6-Methoxynaphthalen-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 6-methoxynaphthalene-2-boronic acid as the aryl coupling reagent and **34** as the arylhalide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, CDCl₃) δ 8.29 (s, 1H), 8.02 (s, 1H), 7.91-7.97 (d, 1H, J=8.4 Hz), 7.80-7.85 (d, 1H, J=9.0 Hz), 7.63-7.68 (m, 1H), 7.20-7.30 (m, 2H), 4.43-4.49 (d, 2H, J=6.3 Hz), 3.98 (s, 3H), 3.44-3.54 (m, 2H), 2.82-3.00 (m, 2H), 2.30-2.45 (m, 1H), 1.86-1.96 (m, 2H), 1.67-1.82 (m, 2H); MS (ESI) 389.5 m/z [MH⁺], $C_{22}H_{25}N_6$ O requires 389.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15b: 1-*Tert*-butyl-3-(6-ethoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 6-ethoxynaphthalene-2-boronic acid as the aryl coupling reagent and **27** as the aryl-halide. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.25 (s, 1H), 8.09 (s, 1H), 7.95 (d, 2H, J=8.4 Hz), 7.73 (dd, 1H, J=1.7, 8.4 Hz), 7.39 (d, 1H, J=2.3 Hz), 7.22 (dd, 1H, J=2.5, 8.9 Hz), 4.18 (q, 2H, J=7.0 Hz), 1.78 (s, 9H), 1.42 (t, 3H, J=6.9 Hz); MS (ESI) 362.3 m/z [MH $^{+}$], C_{21} H $_{24}$ N $_{5}$ O requires 362.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15c: (S)-1-(2-Amino-3-methylbutyl)-3-(6-ethoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. A mixture of 44 (1 eq.) and Boc-L-valinol (2 eq.) in dry THF was added to polymer-supported triphenylphosphine (2 eq.), stirred at room temperature for 20 min, then DIAD (2 eq.) was added. The mixture was then reacted in a microwave at 70 °C for 20 min. The resin was filtered off and washed with dichloromethane, concentrated *in vacuo*, and purified by silica gel flash chromatography with CH₂Cl₂/MeOH elution. The desired product was collected and subsequently deprotected by stirring in a mixture of TFA and DCM for 30 min. After concentrating, the residue was further purified by preparatory RP-HPLC and converted to the HCl salt. ¹H-NMR (500 MHz, CD₃OD) δ 8.50 (s, 1H), 8.16 (s, 1H), 7.97 (d, 1H, *J*=8.4 Hz), 7.88

(d, 1H, J=9.1 Hz), 7.79 (dd, 1H, J=1.7, 8.5), 7.33 (d, 1H, J=2.3 Hz), 7.22 (dd, 1H, J=1.9, 8.4 Hz), 4.79 (d, 2H, J=8.9 Hz), 4.19 (q, 2H, J=7.0 Hz), 3.72 (m, 1H), 1.92-2.12 (m, 1H), 1.46 (t, 3H, J=7.0 Hz), 1.16 (m, 6H); MS (ESI) 391.6 m/z [MH $^+$], $C_{22}H_{27}N_6O$ requires 391.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15d: (S)-1-(2-(Dimethylamino)-3-methylbutyl)-3-(6-ethoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general reductive alkylation procedure*, using **15c** as the amine. 1 H-NMR (500 MHz, CD₃OD) δ 8.55 (s, 1H), 8.17 (s, 1H), 7.99 (d, 1H, J=8.8 Hz), 7.90 (d, 1H, J=8.6 Hz), 7.79 (dd, 1H, J=1.6, 8.4 Hz), 7.35 (d, 1H, J=2.4 Hz), 7.25 (m, 1H), 5.05 (m, 1H), 4.91 (d, 1H, J=6.8 Hz), 4.21 (q, 2H, J=6.8 Hz), 4.00 (dd, 1H, J=4.3, 8.4 Hz), 3.02 (s, 6H), 2.40-2.57 (m, 1H), 1.48 (t, 3H, J=7.0 Hz), 1.22 (m, 6H); MS (ESI) 419.6 m/z [MH $^{+}$], C₂₄H₃₁N₆O requires 419.3; HPLC-1 = 98% pure, HPLC-2 = 97% pure.

15e: (R)-3-(6-Ethoxynaphthalen-2-yl)-1-(pyrrolidin-2-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the same method as for **15c** by using Boc-L-prolinol. 1 H-NMR (500 MHz, CD₃OD) δ 8.52 (s, 1H), 8.19 (s, 1H), 7.99 (d, 1H, J=8.3 Hz), 7.90 (d, 1H, J=8.9 Hz), 7.81 (dd, 1H, J=1.6, 8.6 Hz), 7.34 (d, 1H, J=2.4 Hz), 7.24 (dd, 1H, J=2.5, 8.9 Hz), 5.02 (m, 1H), 4.77 (m, 1H), 4.11-4.29 (m, 3H), 3.44 (m, 1H), 3.33-3.40 (m, 1H), 2.31-2.46 (m, 1H), 2.02-2.24 (m, 2H), 1.85-2.02 (m, 1H), 1.41-1.56 (m, 3H); MS (ESI) 389.6 m/z [MH $^{+}$], $C_{22}H_{25}N_{6}O$ requires 389.2; HPLC-1 = 97% pure, HPLC-2 = 97% pure.

15f: (R)-3-(6-Ethoxynaphthalen-2-yl)-1-((1-methylpyrrolidin-2-yl)methyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general reductive alkylation procedure*, using **15e** as the amine. 1 H-NMR (500 MHz, CD₃OD) δ 8.52 (s, 1H), 8.16 (s, 1H), 7.98 (d, 1H, J=9.1 Hz), 7.89 (d, 1H, J=8.9 Hz), 7.78 (dd, 1H, J=1.5, 8.3 Hz), 7.34 (d, 1H, J=2.4 Hz), 7.24 (dd, 1H, J=2.0, 9.4 Hz), 4.93-5.05 (m, 2H), 4.15-4.27 (m, 2H), 4.02-4.15 (m, 1H), 3.72-3.85 (m, 1H), 3.26 (dd, 1H, J=5.1, 9.0 Hz), 3.07 (s, 3H), 2.42 (m, 1H), 2.11 (m, 3H), 1.47 (t, 3H, J=7.0 Hz); MS (ESI) 403.6 m/z [MH $^{+}$], C₂₃H₂₇N₆O requires 403.2; HPLC-1 = 98% pure, HPLC-2 = 98% pure.

15g: 3-(6-Ethoxynaphthalen-2-yl)-1-(piperidin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the same method as for **15c** by using tert-butyl-4-hydroxypiperidine-1-carboxylate. 1 H-NMR (500 MHz, CD₃OD) δ 8.46 (s, 1H), 8.12 (d, 1H, J=0.8 Hz), 7.98 (d, 1H, J=8.6 Hz), 7.89 (d, 1H, J=9.0 Hz), 7.75 (dd, 1H, J=1.7, 8.4 Hz), 7.34 (d, 1H, J=2.6 Hz), 7.25 (dd, 1H, J=1.9, 9.6 Hz), 5.18-5.37 (m, 1H), 4.21 (q, 2H, J=6.9 Hz), 3.65 (d, 2H, J=12.9 Hz), 3.36 (2H, overlapped with solvent peak), 2.46-2.66 (m, 2H), 2.36 (m, 2H), 1.43-1.58 (m, 3H); MS (ESI) 389.6 m/z [MH $^{+}$], $C_{22}H_{25}N_6O$ requires 389.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15h: 3-(6-Ethoxynaphthalen-2-yl)-1-(1-methylpiperidin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general reductive alkylation procedure*, using **15g** as the amine. 1 H-NMR (500 MHz, CD₃OD) δ 8.49 (s, 1H), 8.12 (s, 1H), 7.98 (d, 1H, J=8.4 Hz), 7.89 (d, 1H, J=9.0 Hz), 7.75 (d, 1H, J=8.3 Hz), 7.34 (d, 1H, J=2.3 Hz), 7.24 (dd, 1H, J=2.2, 8.8 Hz), 5.21-5.34 (m, 1H), 4.21 (q, 2H, J=7.0 Hz), 3.75 (d, 2H, J=13.7 Hz), 3.38 (t, 2H, J=11.9 Hz), 2.98 (s, 3H), 2.66 (m, 2H), 2.40 (d, 2H, J=12.1 Hz), 1.48 (t, 3H, J=6.9 Hz); MS (ESI) 403.6 m/z [MH $^{+}$], C₂₃H₂₇N₆O requires 403.2; HPLC-1 = 97% pure, HPLC-2 = 98% pure.

15i: 3-(6-Ethoxynaphthalen-2-yl)-1-(1-ethylpiperidin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general reductive alkylation procedure*, using **15g** as the amine. 1 H-NMR (500 MHz, CD₃OD) δ 8.49 (s, 1H), 8.12 (s, 1H), 7.98 (d, 1H, J=8.5 Hz), 7.89 (d, 1H, J=9.0 Hz), 7.75 (d, 1H, J=8.7 Hz), 7.35 (d, 1H, J=2.2 Hz), 7.24 (dd, 1H, J=2.4, 8.9 Hz), 5.30 (m, 1H), 4.13-4.28 (m, 2H), 3.81 (d, 2H, J=12.1 Hz), 3.35 (4H, overlapped with solvent peak), 2.67 (m, 2H), 2.42 (d, 2H, J=15.6 Hz), 1.48 (t, 3H, J=7.0 Hz), 1.42 (t, 3H, J=8.0 Hz); MS (ESI) 417.7 m/z [MH $^{+}$], C₂₄H₂₉N₆O requires 417.2; HPLC-1 = 97% pure, HPLC-2 = 97% pure.

15j: 3-(6-Ethoxynaphthalen-2-yl)-1-(1-propylpiperidin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general reductive alkylation procedure*, using **15g** as the amine. ¹H-NMR (500 MHz, CD₃OD) δ 8.55 (s, 1H), 8.14 (s, 1H), 7.98 (d, 1H, *J*=8.4 Hz), 7.89 (d, 1H, *J*=9.0 Hz), 7.75 (d, 1H, *J*=8.3 Hz), 7.34 (d, 1H, *J*=2.4 Hz), 7.24 (dd, 1H, *J*=1.9, 9.2 Hz), 5.19-5.32 (m, 1H), 4.21 (q, 2H, *J*=7.0 Hz), 3.70 (d, 2H, *J*=13.2 Hz), 3.28-3.40 (m, 4H), 2.45-2.66 (m, 2H), 2.40 (d, 2H, *J*=12.4 Hz), 2.28 (d, 2H, *J*=15.4 Hz), 1.48 (t, 3H, *J*=6.9 Hz), 0.95 (t, 3H, *J*=8.1 Hz); MS (ESI) 431.6 *m/z* [MH⁺], C₂₅H₃₁N₆O requires 431.3; HPLC-1 = 98% pure, HPLC-2 = 98% pure.

15k: 1-(1-(3-Aminopropyl)piperidin-4-yl)-3-(6-ethoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general reductive alkylation procedure*, using **15g** as the amine and tert-butyl 2-formylethylcarbamate, followed by the *general boc-deprotection procedure*. ¹H-NMR (500 MHz, CD₃OD) δ 8.54 (s, 1H), 8.15 (s, 1H), 8.01 (d, 1H, *J*=8.6 Hz), 7.92 (d, 1H, *J*=8.5 Hz), 7.85 (d, 1H, *J*=8.0 Hz), 7.38 (d, 1H, *J*=2.2 Hz), 7.26 (dd, 1H, *J*=1.9, 9.2 Hz), 5.21-5.34 (m, 1H), 4.20 (q, 2H, *J*=6.9 Hz), 3.75 (d, 2H, *J*=13.6 Hz), 3.32-3.44 (m, 6H), 2.52-2.68 (m, 2H), 2.44 (d, 2H, *J*=12.6 Hz), 2.14-2.28 (m, 2H), 1.48 (t, 3H, *J*=7.0 Hz); MS (ESI) 446.9 *m/z* [MH⁺], C₂₅H₃₂N₇O requires 446.3; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15l: 1-(4-(4-Amino-3-(6-ethoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)ethanone. This compound was synthesized following the *general Suzuki coupling procedure*, using 6-ethoxynaphthalene-2-boronic acid as the aryl coupling reagent and **38** as the aryl-halide. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.27 (s, 1H), 8.10 (d, 1H, J=1.2 Hz), 7.95 (d, 2H, J=8.6 Hz), 7.75 (dd, 1H, J=1.6, 8.4 Hz), 7.40 (d, 1H, J=2.4 Hz), 7.22 (dd, 1H, J=2.5, 8.9 Hz), 4.94-5.08 (m, 1H), 4.48-4.58 (m, 1H), 4.18 (q, 2H, J=7.0 Hz), 3.92-4.04 (m, 1H), 2.70-2.86 (m, 1H), 2.08-2.28 (m, 2H), 2.06 (s, 3H), 1.92-2.04 (m, 3H), 1.42 (t, 3H, J=6.9 Hz); MS (ESI) 431.5 m/z [MH $^{+}$], C_{24} H₂₇N $_{6}$ O $_{2}$ requires 431.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15m: 3-(6-Ethoxynaphthalen-2-yl)-1-(1-(methylsulfonyl)piperidin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 6-ethoxynaphthalene-2-boronic acid as the aryl coupling reagent and **42** as the aryl-halide. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.27 (s, 1H), 8.12 (d, 1H, J=1.2 Hz), 7.95 (dd, 2H, J=2.1, 8.7 Hz), 7.76 (dd, 1H, J=1.7, 8.5 Hz), 7.40 (d, 1H, J=2.4 Hz), 7.22 (dd, 1H, J=2.5, 8.9 Hz), 4.82-4.96 (m, 1H), 4.19 (q, 2H, J=7.0 Hz), 3.68-3.78 (m, 2H), 2.98-3.10 (m, 2H), 2.95 (s, 3H), 2.18-2.34 (m, 2H), 2.04-2.14 (m, 2H), 1.42 (t, 3H, J=6.9 Hz); MS (ESI) 467.4 m/z [MH $^{+}$], $C_{23}H_{27}N_{6}O_{3}S$ requires 467.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15n: 3-(6-Ethoxynaphthalen-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 6-ethoxynaphthalene-2-boronic acid as the aryl coupling reagent and **34** as the aryl-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.50 (s, 1H), 8.12 (s, 1H), 7.97 (t, 2H, J=8.3 Hz), 7.75 (dd, 1H, J=1.7, 8.4 Hz), 7.43 (d, 1H, J=2.4 Hz), 7.24 (dd, 1H, J=2.5, 9.0 Hz), 4.36 (d, 2H, J=7.0 Hz), 4.19 (q, 2H, J=7.0 Hz), 3.20-3.30 (m, 2H), 2.75-2.92 (m, 2H), 2.20-2.32 (m, 1H), 1.66-1.76 (m, 2H), 1.38-1.56 (m, 5H); MS (ESI) 403.5 m/z [MH⁺], $C_{23}H_{27}N_6O$ requires 403.2; HPLC-1 = 100% pure, HPLC-2 = 97% pure.

150: 3-(6-Ethoxynaphthalen-2-yl)-1-((1-methylpiperidin-4-yl)methyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general reductive alkylation procedure*, using **15n** as the amine. 1 H-NMR (500 MHz, CD₃OD) δ 8.47 (s, 1H), 8.13 (s, 1H), 7.98 (d, 1H, J=8.4 Hz), 7.89 (d, 1H, J=9.0 Hz), 7.76 (d, 1H, J=7.8 Hz), 7.34 (d, 1H, J=2.4 Hz), 7.24 (m, 1H), 4.51 (d, 2H, J=6.7 Hz), 4.21 (q, 2H, J=7.0 Hz), 3.53 (d, 2H, J=11.2 Hz), 3.01 (t, 2H, J=11.7 Hz), 2.84 (s, 3H), 2.31-2.52 (m, 1H), 1.98 (d, 2H, J=14.3 Hz), 1.71 (m, 2H), 1.48 (t, 3H, J=7.0 Hz); MS (ESI) 417.6 m/z [MH $^{+}$], C_{24} H₂₉N₆O requires 417.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15p: 3-(6-Ethoxynaphthalen-2-yl)-1-((1-ethylpiperidin-4-yl)methyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general reductive alkylation procedure*, using **15n** as the amine. ¹H-NMR (500 MHz, CD₃OD) δ 8.47 (s, 1H), 8.13 (d, 1H, *J*=3.9 Hz), 7.98 (d, 1H, *J*=8.6 Hz), 7.89 (d, 1H, *J*=9.1 Hz), 7.76 (m, 1H), 7.35 (d, 1H, *J*=2.4 Hz), 7.25 (m, 1H), 4.52 (d, 2H, *J*=6.6 Hz), 4.14-4.32 (m, 2H), 3.59 (d, 2H, *J*=8.0 Hz), 3.16 (m, 2H), 2.95 (t, 2H, *J*=11.1 Hz), 2.45 (s, 1H), 2.01 (d, 2H, *J*=13.6 Hz), 1.71 (m, 2H), 1.48 (t, 3H, *J*=7.0 Hz), 1.34 (t, 3H, *J*=7.3 Hz); MS (ESI) 431.6 *m/z* [MH⁺], C₂₅H₃₁N₆O requires 431.3; HPLC-1 = 97% pure, HPLC-2 = 97% pure.

15q: 1-(4-((4-Amino-3-(6-ethoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)methyl)piperidin-1-yl)ethanone. This compound was synthesized following the *general Suzuki coupling procedure*, using 6-ethoxynaphthalene-2-boronic acid as the aryl coupling reagent and **39** as the aryl-halide. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.27 (s, 1H), 8.12 (s, 1H), 7.95 (d, 2H, J=8.7 Hz), 7.76 (dd, 1H, J=1.5, 8.4 Hz), 7.39 (d, 1H, J=2.2 Hz), 7.22 (dd, 1H, J=2.4, 9.0 Hz), 4.24-4.38 (m, 3H), 4.19 (q, 2H, J=7.0 Hz), 3.74-3.82 (m, 1H), 2.90-3.02 (m, 1H), 2.14-2.28 (m, 1H), 1.96 (s, 3H), 1.50-1.60 (m, 2H), 1.42 (t, 3H, J=6.9 Hz), 1.02-1.28 (m, 3H); MS (ESI) 445.4 m/z [MH $^{+}$], C_{25} H $_{29}$ N $_{6}$ O $_{2}$ requires 445.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15r: 3-(6-Ethoxynaphthalen-2-yl)-1-((1-(methylsulfonyl)piperidin-4-yl)methyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using 6-ethoxynaphthalene-2-boronic acid as the aryl coupling reagent and **43** as the aryl-halide. ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.27 (s, 1H), 8.12 (s, 1H), 7.95 (dd, 2H, J=1.6, 7.5 Hz), 7.76 (dd, 1H, J=1.6, 8.4 Hz), 7.39 (d, 1H, J=2.3 Hz), 7.22 (dd, 1H, J=2.5, 8.9 Hz), 4.31 (d, 2H, J=6.9 Hz), 4.19 (q, 2H, J=7.0 Hz), 3.48-3.58 (m, 2H), 2.82 (s, 3H), 2.60-2.74 (m, 2H), 2.04-2.20 (m, 1H), 1.60-1.70 (m, 2H), 1.42 (t, 3H, J=6.9 Hz), 1.22-1.38 (m, 2H); MS (ESI) 481.4 m/z [MH⁺], $C_{24}H_{29}N_6O_3S$ requires 481.2; HPLC-1 = 99% pure, HPLC-2 = 98% pure.

15s: 3-(6-Ethoxynaphthalen-2-yl)-1-(2-(piperidin-4-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following procedure for **15c**, using **44** as the pyrazolopyrimidine scaffold, and tert-butyl-4-(2-hydroxyethyl)piperidine-1-carboxylate. 1 H-NMR (500 MHz, CD₃OD) δ 8.39 (s, 1H), 8.04-8.15 (m, 1H), 7.95 (d, 1H, J=8.6 Hz), 7.87 (d, 1H, J=9.0 Hz), 7.73 (dd, 1H, J=1.8, 8.5 Hz), 7.31 (d, 1H, J=2.8 Hz), 7.22 (dd, 1H, J=2.5, 8.9 Hz), 4.49-4.66 (m, 2H), 4.11-4.29 (m, 2H), 3.36 (d, 2H, J=13.2 Hz), 2.92 (t, 2H, J=11.8 Hz), 2.06 (d, 2H, J=13.4 Hz), 1.94-2.02 (m, 2H), 1.56-1.66 (m, 1H), 1.31-1.49 (m, 5H); MS (ESI) 417.6 m/z [MH⁺], C₂₄H₂₉N₆O requires 417.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15t: 3-(6-Ethoxynaphthalen-2-yl)-1-(2-(1-methylpiperidin-4-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general reductive alkylation procedure*, using **15s** as the amine. 1 H-NMR (500 MHz, CD₃OD) δ 8.39 (s, 1H), 8.09 (s, 1H), 7.95 (d, 1H, J=8.6 Hz), 7.87 (d, 1H, J=9.0 Hz), 7.73 (dd, 1H, J=1.8, 8.5 Hz), 7.32 (d, 1H, J=2.5 Hz), 7.22 (dd, 1H, J=2.5, 8.9 Hz), 4.56 (t, 2H, J=6.6 Hz), 4.19 (q, 2H, J=7.0 Hz), 3.56 (d, 2H, J=12.2 Hz), 2.96-3.12 (m, 2H), 2.81 (s, 3H), 2.10 (d, 2H, J=15.2 Hz), 1.70 (m, 2H), 1.58-1.65 (m, 1H), 1.42-1.50 (m, 5H); MS (ESI) 431.6 m/z [MH $^{+}$], C₂₅H₃₁N₆O requires 431.3; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15u: 3-(6-Ethoxynaphthalen-2-yl)-1-(2-(1-ethylpiperidin-4-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general reductive alkylation procedure*, using **15s** as the amine. ¹H-NMR (500 MHz, CD₃OD) δ 8.41 (s, 1H), 8.11 (s, 1H), 7.96 (d, 1H, *J*=8.6 Hz), 7.97 (d, 1H, *J*=9.0 Hz), 7.83 (dd, 1H, *J*=1.7, 8.4 Hz), 7.38 (d, 1H, *J*=2.6 Hz), 7.24 (dd, 1H, *J*=1.9, 9.6 Hz), 4.56 (t, 2H, *J*=7.2 Hz), 4.16-4.29 (m, 2H), 3.49 (d, 2H, *J*=14.2 Hz), 3.05-3.20 (m, 2H), 2.86 (t, 2H, *J*=11.2 Hz), 2.08 (d, 2H, *J*=15.6 Hz), 1.69 (m, 2H), 1.50-1.62 (m, 1H), 1.34-1.47 (m, 5H), 1.28 (t, 3H, *J*=8.6 Hz); MS (ESI) 445.7 *m/z* [MH⁺], C₂₆H₃₂N₆O requires 445.3; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15v: 3-(6-Ethoxynaphthalen-2-yl)-1-(2-(1-propylpiperidin-4-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general reductive alkylation procedure*, using **15s** as the amine. 1 H-NMR (500 MHz, CD₃OD) δ 8.39 (s, 1H), 8.09 (s, 1H), 7.95 (d, 1H, J=8.5 Hz), 7.87 (d, 1H, J=9.0 Hz), 7.73 (dd, 1H, J=1.7, 8.4 Hz), 7.32 (d, 1H, J=2.5 Hz), 7.22 (dd, 1H, J=2.5, 8.9 Hz), 4.57 (t, 2H, J=6.9 Hz), 4.19 (q, 2H, J=7.0 Hz), 3.55 (d, 2H, J=14.8 Hz), 2.94-3.06 (m, 2H), 2.87 (t, 2H, J=11.1 Hz), 2.12 (d, 2H, J=15.4 Hz), 1.92-2.03 (m, 2H), 1.72 (m, 2H), 1.54-1.66 (m, 1H), 1.42-1.50 (m, 5H), 0.98 (t, 3H, J=8.1 Hz); MS (ESI) 459.7 m/z [MH⁺], C_{27} H₃₅N₆O requires 459.3; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

15w: 1-(2-(1-(3-Aminopropyl)piperidin-4-yl)ethyl)-3-(6-ethoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the procedure for **15k**, using **15s** as the amine. 1 H-NMR (500 MHz, CD₃OD) δ 8.38 (s, 1H), 8.09 (d, 1H, J=1.4 Hz), 7.95 (d, 1H, J=8.7 Hz), 7.87 (d, 1H, J=8.9 Hz), 7.73 (dd, 1H, J=1.9, 8.6 Hz), 7.32 (d, 1H, J=2.4 Hz), 7.22 (dd, 1H, J=2.5, 8.8 Hz), 4.56 (t, 2H, J=6.2 Hz), 4.19 (q, 2H, J=6.9 Hz), 3.57 (d, 2H, J=12.2 Hz), 3.08-3.22 (m, 2H), 3.00 (m, 2H), 2.91 (t, 2H, J=10.9 Hz), 2.10 (m, 4H), 1.92-2.05 (m, 2H), 1.81 (m, 1H), 1.57 (m, 2H), 1.47 (t, 3H, J=7.0 Hz); MS (ESI) 474.7 m/z [MH $^{+}$], C₂₇H₃₆N₇O requires 474.3; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

16n: 3-(2-Ethoxyquinolin-6-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using **46** as the aryl coupling reagent and **34** as the aryl-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.57 (s, 1H), 8.37 (d, 1H, J=9.0 Hz), 8.18 (s, 1H), 7.94 (s, 2H), 7.10 (d, 1H, J=8.8 Hz), 4.51 (d, 2H, J=7.0 Hz), 4.35-4.41 (m, 2H), 3.20-3.30 (m, 2H), 2.76-2.92 (m, 2H), 2.24-2.34 (m, 1H), 1.68-1.78 (m, 2H), 1.45-1.60 (m, 2H), 1.41(t, 3H, J=7.1 Hz); MS (ESI) 404.4 m/z [MH⁺], $C_{22}H_{26}N_7O$ requires 404.2; HPLC-1 = 99% pure, HPLC-2 = 99% pure.

17a: 3-(6-Isopropoxynaphthalen-2-yl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **28** as the naphthol scaffold and isopropyl iodide as the **R**₃-halide. ¹H-NMR (300 MHz, CD₃OD) δ 8.27 (s, 1H), 8.10 (s, 1H), 7.88-7.97 (m, 2H), 7.76 (d, 1H, J=9.0 Hz), 7.35 (s, 1H), 7.19-7.24 (m, 1H), 5.13-5.22 (m, 1H), 1.60-1.63 (m, 6H), 1.41-1.45 (m, 6H); MS (ESI) 362.4 m/z [MH⁺], C₂₁H₂₄N₅O requires 362.2; HPLC-1 = 95% pure, HPLC-2 = 95% pure.

17n: 3-(6-Isopropoxynaphthalen-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **35** as the naphthol scaffold and isopropyl iodide as the **R**₃-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, CDCl₃) δ 8.27 (s, 1H), 8.02 (s, 1H), 7.87-7.94 (d, 1H, J=8.4 Hz), 7.77-7.84 (d, 1H, J=9.0 Hz), 7.60-7.67 (m, 1H), 7.20-7.28 (m, 2H), 4.71-4.82 (septet, 1H, J=6.0 Hz), 4.40-4.48 (m, 2H), 3.40-3.52 (m, 2H), 2.80-2.93 (m, 2H), 2.30-2.44 (m, 1H), 1.83-1.96 (m, 2H), 1.67-1.81 (m, 2H), 1.41-1.46 (d, 6H, J=6.0 Hz); MS (ESI) 417.5 m/z [MH⁺], $C_{24}H_{29}N_6O$ requires 417.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

18a: 3-(6-(Allyloxy)naphthalen-2-yl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **28** as the naphthol scaffold and allyl bromide as the **R**₃-halide. ¹H-NMR (300 MHz, CDCl₃) δ 8.29 (s, 1H), 8.04 (s, 1H), 7.90-7.95 (d, 1H, J=8.4 Hz), 7.81-7.87 (d, 1H, J=9.0 Hz), 7.66-7.72 (m, 1H), 7.19-7.33 (m, 2H), 6.07-6.22 (m, 1H), 5.45-5.55 (m, 1H), 5.32-5.40 (m, 1H), 5.23 (septet, 1H, J=6.9 Hz), 4.67-4.74 (m, 2H), 1.65 (d, 6H, J=6.9 Hz); MS (ESI) 360.5 m/z [MH⁺], C₂₁H₂₂N₅O requires 360.2; HPLC-1 = 98% pure, HPLC-2 = 100% pure.

18n: 3-(6-(Allyloxy)naphthalen-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **35** as the naphthol scaffold and allyl bromide as the \mathbf{R}_3 -halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, CDCl₃) δ 8.29 (s, 1H), 8.02 (s, 1H), 7.90-7.95 (d, 1H, J=8.4 Hz), 7.80-7.85 (d, 1H, J=9.0 Hz), 7.62-7.68 (m, 1H), 7.22-7.34 (m, 2H), 6.06-6.21 (m, 1H), 5.45-5.54 (m, 1H), 5.33-5.41 (m, 1H), 4.68-4.73 (m, 2H), 4.43-4.49 (d, 2H, J=6.6 Hz), 3.40-3.54 (m, 2H), 2.82-3.00 (m, 2H), 2.30-2.45 (m, 1H), 1.60-1.98 (m, 4H); MS (ESI) 415.5 m/z [MH $^+$], $C_{24}H_{27}N_6O$ requires 415.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

19a: 1-Isopropyl-3-(6-propoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **28** as the naphthol scaffold and 1-iodopropane as the **R**₃-halide. 1 H-NMR (300 MHz, CD₃OD) δ 8.27 (s, 1H), 8.10 (s, 1H), 7.96 (d, 1H, J=9.0 Hz), 7.90 (d, 1H, J=9.0 Hz), 7.76 (dd, 1H, J=3.0, 9.0 Hz), 7.33-7.34 (m, 1H), 7.24 (dd, 1H, J=3.0, 9.0 Hz), 5.13-5.22 (m, 1H), 4.12 (t, 2H, J=6.0 Hz), 1.85-1.96 (m, 2H), 1.61 (d, 6H, J=3.0 Hz), 1.13 (t, 3H, J=9.0 Hz); MS (ESI) 362.3 m/z [MH $^{+}$], C_{21} H $_{24}$ N $_{3}$ O requires 362.2; HPLC-1 = 95% pure, HPLC-2 = 95% pure.

19n: 1-(Piperidin-4-ylmethyl)-3-(6-propoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **35** as the naphthol scaffold and 1-iodopropane as the **R**₃-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, CDCl₃) δ 8.29 (s, 1H), 8.02 (s, 1H), 7.87-7.94 (d, 1H, *J*=8.4 Hz), 7.77-7.83 (d, 1H, *J*=9.0 Hz), 7.62-7.67 (m, 1H), 7.18-7.30 (m, 2H), 4.42-4.48 (d, 2H, *J*=6.6 Hz), 4.04-4.11 (t, 2H, *J*=6.6 Hz), 3.40-3.52 (m, 2H), 2.81-2.94 (m, 2H), 2.30-2.44 (m, 1H), 1.83-1.96 (m, 4H), 1.67-1.80 (m, 2H), 1.07-1.14 (t, 3H, *J*=7.5 Hz); MS (ESI) 417.5 *m/z* [MH⁺], C₂₄H₂₉N₆O requires 417.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

20a: 3-(6-Tsobutoxynaphthalen-2-yl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **28** as the naphthol scaffold and isobutyl iodide as the **R**₃-halide. 1 H-NMR (300 MHz, CDCl₃) δ 8.28 (s, 1H), 8.03 (s, 1H), 7.89-7.94 (d, 1H, J=8.4 Hz), 7.78-7.84 (d, 1H, J=9.0 Hz), 7.65-7.70 (m, 1H), 7.18-7.29 (m, 2H), 5.23 (septet, 1H, J=6.9 Hz), 3.89 (d, 2H, J=6.6 Hz), 2.12-2.26 (m, 1H), 1.65 (d, 6H, J=6.9 Hz), 1.09 (d, 6H, J=6.6 Hz); MS (ESI) 376.5 m/z [MH $^{+}$], C₂₂H₂₆N₅O requires 376.2; HPLC-1 = 99% pure, HPLC-2 = 96% pure.

20b: 1-Tert-butyl-3-(6-isobutoxynaphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general Suzuki coupling procedure*, using **48** as the aryl coupling reagent and **27** as the aryl-halide. 1 H-NMR (300 MHz, d_{6} -DMSO) δ 8.25 (s, 1H), 8.09 (s, 1H), 7.95 (d, 2H, J=6.6 Hz), 7.73 (d, 1H, J=8.1 Hz), 7.41 (s, 1H), 7.24 (d, 1H, J=8.0 Hz), 3.91 (d, 2H, J=6.2 Hz), 2.11 (m, 1H), 1.78 (s, 9H), 1.04 (d, 6H, J=6.4 Hz); MS (ESI) 390.4 m/z [MH⁺], C₂₃H₂₈N₅O requires 390.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

20n: 3-(6-Isobutoxynaphthalen-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **35** as the naphthol scaffold and isobutyl iodide as the **R**₃-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, d_6 -DMSO) δ 8.48 (s, 1H), 8.12 (s, 1H), 7.97 (t, 2H, J=8.5 Hz), 7.74 (dd, 1H, J=1.5, 8.5 Hz), 7.43 (d, 1H, J=2.3 Hz), 7.26 (dd, 1H, J=2.4, 8.9 Hz), 4.35 (d, 2H, J=6.8 Hz), 3.91 (d, 2H, J=6.6 Hz), 3.24 (m, 2H), 2.84 (m, 2H), 2.20-2.35 (m, 1H), 2.11 (m, 1H), 1.72 (m, 2H), 1.48 (m, 2H), 1.10-1.30 (m, 2H), 1.04 (d, 6H, J=6.7 Hz); MS (ESI) 431.4 m/z [MH⁺], C₂₅H₃₁N₆O requires 430.55; HPLC-1 = 100% pure, HPLC-2 = 99% pure.

21a: 3-(6-Butoxynaphthalen-2-yl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **28** as the naphthol scaffold and 1-iodobutane as the **R**₃-halide. 1 H-NMR (300 MHz, CDCl₃) δ 8.23 (s, 1H), 8.02 (s, 1H), 7.88-7.94 (d, 1H, J=8.4 Hz), 7.78-7.84 (d, 1H, J=9.0 Hz), 7.65-7.70 (m, 1H), 7.18-7.29 (m, 2H), 5.23 (septet, 1H, J=6.9 Hz), 4.13 (t, 2H, J=6.6 Hz), 1.81-1.92 (m, 2H), 1.67 (d, 6H, J=6.9 Hz), 1.50-1.62 (m, 2H), 1.02 (t, 3H, J=7.2 Hz); MS (ESI) 376.5 m/z [MH $^{+}$], $C_{22}H_{26}N_{5}O$ requires 376.2; HPLC-1 = 99% pure, HPLC-2 = 100% pure.

21n: 3-(6-Butoxynaphthalen-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **35** as the naphthol scaffold and 1-iodobutane as the **R**₃-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, CDCl₃) δ 8.27 (s, 1H), 8.01 (s, 1H), 7.88-7.94 (d, 1H, J=8.4 Hz), 7.77-7.83 (d, 1H, J=9.0 Hz), 7.60-7.67 (m, 1H), 7.17-7.30 (m, 2H), 4.40-4.48 (m, 2H), 4.08-4.15 (m, 2H), 3.40-3.52 (m, 2H), 2.80-2.95 (m, 2H), 2.30-2.44 (m, 1H), 1.83-1.96 (m, 4H), 1.67-1.80 (m, 2H), 1.45-1.52 (m, 2H), 1.07-1.14 (m, 3H); MS (ESI) 431.5 m/z [MH⁺], $C_{25}H_{31}N_{6}O$ requires 431.3; HPLC-1 = 97% pure, HPLC-2 = 96% pure.

22a: 3-(6-(Benzyloxy)naphthalen-2-yl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **28** as the naphthol scaffold and benzyl bromide as the **R**₃-halide. ¹H-NMR (300 MHz, CDCl₃) δ 8.39 (s, 1H), 8.09 (s, 1H), 7.75-7.91 (m, 3H), 7.48-7.54 (m, 2H), 7.27-7.46 (m, 5H), 5.16-5.26 (m, 3H), 1.63 (d, 6H, J=6.9 Hz); MS (ESI) 410.5 m/z [MH⁺], C₂₅H₂₄N₅O requires 410.2; HPLC-1 = 96% pure, HPLC-2 = 98% pure.

22n: 3-(6-(Benzyloxy)naphthalen-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **35** as the naphthol scaffold and benzyl bromide as the **R**₃-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, CD₃OD) δ 8.42 (s, 1H), 8.10 (s, 1H), 7.82-7.96 (m, 2H), 7.67-7.76 (m, 1H), 7.24-7.49 (m, 7H), 5.20 (s, 2H), 4.43-4.49 (m, 2H), 3.24-3.38 (m, 2H), 2.86-3.05 (m, 2H), 2.32-2.48 (m, 1H), 1.82-1.98 (m, 2H), 1.51-1.68 (m, 2H); MS (ESI) 465.5 m/z [MH⁺], C₂₈H₂₉N₆O requires 465.2; HPLC-1 = 97% pure, HPLC-2 = 95% pure.

23a: 3-(6-(2-Chlorobenzyloxy)naphthalen-2-yl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **28** as the naphthol scaffold and 2-chlorobenzyl bromide as the **R**₃-halide. ¹H-NMR (300 MHz, CDCl₃) δ 8.25 (s, 1H), 8.05 (s, 1H), 7.92-7.97 (d, 1H, J=8.4 Hz), 7.83-7.89 (d, 1H, J=9.0 Hz), 7.68-7.73 (m, 1H), 7.60-7.65 (m, 1H), 7.42-7.48 (m, 1H), 7.35-7.40 (m, 1H), 7.28-7.34 (m, 3H), 5.34 (s, 2H), 5.23 (septet, 1H, J=6.9 Hz), 1.65 (d, 6H, J=6.9 Hz); MS (ESI) 445.0 m/z [MH⁺], C₂₅H₂₄ClN₅O requires 444.2; HPLC-1 = 99% pure, HPLC-2 = 96% pure.

23n: 3-(6-(2-Chlorobenzyloxy)naphthalen-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **35** as the naphthol scaffold and 2-chlorobenzyl bromide as the **R**₃-halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, CDCl₃) δ 8.26 (s, 1H), 8.02 (s, 1H), 7.91-7.97 (d, 1H, J=8.4 Hz), 7.82-7.88 (d, 1H, J=9.0 Hz), 7.59-7.69 (m, 2H), 7.29-7.47 (m, 5H), 5.33 (s, 2H), 4.43-4.49 (d, 2H, J=6.6 Hz), 3.38-3.50 (m, 2H), 2.79-2.94 (m, 2H), 2.28-2.42 (m, 1H), 1.68-1.96 (m, 4H); MS (ESI) 500.0 m/z [MH⁺], C₂₈H₂₈ClN₆O requires 499.2; HPLC-1 = 100% pure, HPLC-2 = 99% pure.

24a: 3-(6-(3-Chlorobenzyloxy)naphthalen-2-yl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **28** as the naphthol scaffold and 3-chlorobenzyl bromide as the **R**₃-halide. ¹H-NMR (300 MHz, CDCl₃) δ 8.27 (s, 1H), 8.05 (s, 1H), 7.91-7.96 (d, 1H, *J*=8.4 Hz), 7.84-7.89 (d, 1H, *J*=9.0 Hz), 7.68-7.73 (m, 1H), 7.52 (s, 1H), 7.32-7.39 (m, 3H), 7.23-7.29 (m, 2H), 5.15-5.28 (m, 3H), 1.65 (d, 6H, *J*=6.9 Hz); (ESI) 445.0 *m/z* [MH⁺], C₂₅H₂₃ClN₅O requires 444.2; HPLC-1 = 100% pure, HPLC-2 = 100% pure.

24n: 3-(6-(3-Chlorobenzyloxy)naphthalen-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **35** as the naphthol scaffold and 3-chlorobenzyl bromide as the **R**₃-halide, followed by the *general boc-deprotection procedure*. 1 H-NMR (300 MHz, CDCl₃) δ 8.26 (s, 1H), 8.03 (s, 1H), 7.90-7.96 (d, 1H, J=8.4), 7.82-7.88 (d, 1H, J=9.0 Hz), 7.63-7.69 (m, 1H), 7.50 (s, 1H), 7.32-7.40 (m, 5H), 5.21 (s, 2H), 4.43-4.49 (d, 2H, J=6.6 Hz), 3.44-3.54 (m, 2H), 2.82-2.96 (m, 2H), 2.30-2.45 (m, 1H), 1.70-1.96 (m, 4H); MS (ESI) 500.0 m/z [MH $^{+}$], $C_{28}H_{28}ClN_6O$ requires 499.2; HPLC-1 = 98% pure, HPLC-2 = 98% pure.

25a: 3-(6-(4-Chlorobenzyloxy)naphthalen-2-yl)-1-isopropyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **28** as the naphthol scaffold and 4-chlorobenzyl bromide as the **R**₃-halide. ¹H-NMR (300 MHz, CDCl₃) δ 8.30 (s, 1H), 8.05 (s, 1H), 7.91-7.96 (d, 1H, J=8.4 Hz), 7.84-7.89 (d, 1H, J=9.0 Hz), 7.68-7.73 (m, 1H),7.38-7.47 (m, 4H), 7.30-7.36 (m, 1H), 7.27-7.29 (m, 1H), 5.17-5.28 (m, 3H), 1.66 (d, 6H, J=6.9 Hz); MS (ESI) 445.0 m/z [MH⁺], C₂₅H₂₃ClN₅O requires 444.2; HPLC-1 = 100% pure, HPLC-2 = 99% pure.

25n: 3-(6-(4-Chlorobenzyloxy)naphthalen-2-yl)-1-(piperidin-4-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine. This compound was synthesized following the *general naphthol alkylation procedure*, using **35** as the naphthol scaffold and 4-chlorobenzyl bromide as the \mathbf{R}_3 -halide, followed by the *general boc-deprotection procedure*. ¹H-NMR (300 MHz, CDCl₃) δ 8.26 (s, 1H), 8.02 (s, 1H), 7.89-7.94 (d, 1H, J=8.4 Hz), 7.82-7.87 (d, 1H, J=9.0 Hz), 7.64-7.69 (m, 1H), 7.32-7.47 (m, 6H), 5.20 (s, 2H), 4.43-4.49 (d, 2H, J=6.3 Hz), 3.98 (s, 3H), 3.44-3.54 (m, 2H), 2.82-3.00 (m, 2H), 2.30-2.45 (m, 1H), 1.86-1.96 (m, 2H), 1.67-1.82 (m, 2H); MS (ESI) 500.0 m/z [MH⁺], $C_{28}H_{28}ClN_6O$ requires 499.2; HPLC-1 = 97% pure, HPLC-2 = 97% pure.

Supporting Information References:

- 1. Murphy, R. C.; Ojo, K. K.; Larson, E. T.; Castellanos-Gonzalez, A.; Perera, B. G.; Keyloun, K. R.; Kim, J. E.; Bhandari, J. G.; Muller, N. R.; Verlinde, C. L.; White, A. C., Jr.; Merritt, E. A.; Van Voorhis, W. C.; Maly, D. J. Discovery of Potent and Selective Inhibitors of Calcium-Dependent Protein Kinase 1 (CDPK1) from C. parvum and T. gondii. *ACS Med Chem Lett* **2010**, *1*, 331-335.
- 2. Bulawa, C. E.; Devit, M.; Elbaum, D. Preparation of pyrazolopyrimidinamines as modulators of protein trafficking. WO2009062118A2, 2009.