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S1 Calculation of causal effects from observed probability dis-

tributions

We here show how to express a postinterventional probability in terms of the observed probabilities when
it is assumed that all the variables on a causal structure are observed. Supposed that a causal structure
contains a set of variables V = {V1, ..., Vn}. The joint probability distribution can be expressed using the
Markov factorization:

p(v1, ..., vn) =

n
∏

k=1

p(vk|pa(vk)), (1)

where each variable Vk is only conditioned on its parents in the causal graph. Consider now that we want
to calculate the postinterventional distribution p(x|do(Y = y)), where X and Y are two disjoint subsets
of V . Intervening do(Y = y) is equivalent to removing the parents of all the variables vk ∈ Y , since
p(Y = y′|do(Y = y)) = δyy′ . Therefore the postinterventional joint probability distribution resulting
from the intervention on Y = y can be calculated from the observed joint distribution p(V ). In the
Markov factorization of Eq. 1 the factors

∏

{vk∈Y } p(vk|pa(vk)) are substituted by 1 if Y = y and 0 if
Y 6= y resulting in:

p(V |do(Y = y)) =

{ ∏

{vk∈V \Y } p(vk|pa(vk)) if Y = y

0 if Y 6= y,
(2)

that is, for Y = y

p(v|do(Y = y)) =
p(v)

∏

{vk∈Y } p(vk|pa(vk))
. (3)

The postinterventional distribution of Eqs. 2 and 3 allows us to calculate the causal effect p(x|do(Y =
y)) by marginalization of the joint postinterventional probability distribution. In particular

p(x|do(Y = y)) =
∑

vk∈V \{XY }

∏

{vk∈V \Y }

p(vk|pa(vk)). (4)

The procedure above is also applicable to calculate conditional causal effects given that

p(x|z, do(Y = y)) ,
p(x, z|do(Y = y))

p(z|do(Y = y))
. (5)
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S2 Exemplary calculations of causal effects

Here we apply the procedure described above to calculate the causal effect p(x|do(Y = y)) and the
conditional causal effect p(x|Z = z, do(Y = y)) for the two exemplary causal graphs of Figure S1A and
S1B. We start considering the causal graph of Figure S1A. In that case the Markov factorization of the
joint distribution is:

p(x, y, z) = p(x|y, z)p(y|z)p(z). (6)

The postinterventional joint distribution is:

p(x, y, z|do(Y = y)) = p(x|y, z)p(z) (7)

and the causal effect of do(Y = y) on X is:

p(x|do(Y = y)) =
∑

z

p(x|y, z)p(z). (8)

Similarly the causal effect of do(Y = y) on Z is:

p(z|do(Y = y)) =
∑

x

p(x|y, z)p(z) = p(z), (9)

and thus the conditional causal effect given Z = z of do(Y = y) on X is:

p(x|Z = z, do(Y = y)) =
p(x, z|do(Y = y))

p(z|do(Y = y))
=

p(x|y, z)p(z)

p(z)
= p(x|y, z). (10)

Therefore we see that while the causal effect p(x|do(Y = y)) (Eq. 8) is not a natural causal effect (see
Results section for a definition), the conditional causal effect p(x|Z = z, do(Y = y)) (Eq. 10) is a natural
causal effect.

A Y

X Z

B Y

X Z

C Y

X Z

D Y

X Z

Figure S1: Causal graphs illustrating the effect of interventions. A: Graph showing a case where
the statistical dependence between Y andX is (partly) due to a causal interaction from Y toX. B: Graph
showing a case where the statistical dependence between Y and X is induced solely by the confounding
variable Z. C: Graph corresponding to the intervention do(Y = y′) in the causal graph shown in A. D:
Graph corresponding to the intervention do(Y = y′) in the causal graph shown in B.

We now turn to Figure S1B. The Markov factorization is:

p(x, y, z) = p(x|z)p(y|z)p(z). (11)

The postinterventional joint distribution is:

p(x, y, z|do(Y = y)) = p(x|z)p(z) (12)



4

and the causal effect of do(Y = y) on X is:

p(x|do(Y = y)) =
∑

z

p(x|z)p(z) = p(x). (13)

Similarly the causal effect of do(Y = y) on Z is:

p(z|do(Y = y)) =
∑

x

p(x|z)p(z) = p(z), (14)

and thus the conditional causal effect given Z = z of do(Y = y) on X is:

p(x|Z = z, do(Y = y)) =
p(x, z|do(Y = y))

p(z|do(Y = y))
=

p(x|z)p(z)

p(z)
= p(x|z). (15)

In this case none of the causal effects fulfills the condition of existence of natural causal effects. In
particular in this case the postinterventional distributions consistently indicate that intervening Y has
no effect on X, and thus not only the causal effect is not natural but there is no causal effect at all.
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S3 Conditions for the existence of natural causal effects

We here provide a proof of which are the conditions on the causal structure for which natural causal effects
exist. Our results constitute an extended and more formal proof of the arguments provided in [1] for
the so called action-observation exchange rule of do Calculus. Consider that we have V = {Y,Z,X,W}
where Y , Z, W ,and X can be sets of variables. We want to see the conditions for which

p(x|z, do(y)) = p(x|z, y). (16)

For that purpose we consider:

p(x|z, do(y)) =

∑

V \{Z,X,Y } p(v\y|do(y))
∑

V \{Z,Y } p(v\y|do(y))
=

∑

V \{Z,X,Y }
p(v)∏

{vk∈Y } p(vk|pa(vk))

∑

V \{Z,Y }
p(v)∏

{vk∈Y } p(vk|pa(vk))

(17)

where v\y means a particular value of the variables V \Y . The first equality is a direct application of the
definition of conditional intervention (Eq. 5), while the second is a direct application of the definition of
intervention (Eq. 3).

Now we divide V into
⋃

pa(Y )∪ {Z,X, Y } and the rest, to which we refer by O. Here
⋃

pa(y) is the
set formed by all the parents of vk ∈ Y . We can write

p(x|z, do(y)) =

∑

V \{Z,X,Y }
p(o|

⋃
pa(y)∪{z,x,y})p(

⋃
pa(y)∪{z,x,y})∏

{vk∈Y } p(vk|pa(vk))

∑

V \{Z,Y }
p(o|

⋃
pa(y)∪{z,x,y})p(

⋃
pa(y)∪{z,x,y})∏

{vk∈Y } p(vk|pa(vk))

. (18)

The sum of p(o|
⋃

pa(y) ∪ {z, x, y}) over O normalizes to 1. So we have:

p(x|z, do(y)) =

∑

⋃
pa(y)\{Z,X}

p(
⋃

pa(y)∪{z,x,y})∏
{vk∈Y } p(vk|pa(vk))

∑

(
⋃

pa(y)∪X)\Z
p(

⋃
pa(y)∪{z,x,y})∏

{vk∈Y } p(vk|pa(vk))

. (19)

we now use the chain rule to explicitly consider the conditional probabilities of X:

p(x|z, do(y)) =

∑

⋃
pa(Y )\{Z,X}

p(x|{
⋃

pa(y)\x}∪{z,y})p({
⋃

pa(y)\x}∪{z,y})∏
{vk∈Y } p(vk|pa(vk))

∑

(
⋃

pa(Y )∪X)\Z
p(x|{

⋃
pa(y)\x}∪{z,y})p({

⋃
pa(y)\x}∪{z,y})∏

{vk∈Y } p(vk|pa(vk))

. (20)

We will now derive sufficient conditions for Eq. 16. If p(x|{
⋃

pa(y)\x} ∪ {z, y}) = p(x|z, y) we can
write:

p(x|z, do(y)) =
p(x|z, y)

∑

⋃
pa(Y )\{Z,X}

p({
⋃

pa(y)\x}∪{z,y})∏
{vk∈Y } p(vk|pa(vk))

∑

X p(x|z, y)
∑

⋃
pa(Y )\{Z,X}

p({
⋃

pa(y)\x}∪{z,y})∏
{vk∈Y } p(vk|pa(vk))

. (21)

and if X ∩
⋃

pa(Y ) = ∅ we sum
∑

X p(x|z, y) = 1 to obtain:

p(x|z, do(y)) =
p(x|z, y)

∑

⋃
pa(Y )\Z

p(
⋃

pa(y)∪{z,y})∏
{vk∈Y } p(vk|pa(vk))

∑

⋃
pa(Y )\Z

p(
⋃

pa(y)∪{z,y})∏
{vk∈Y } p(vk|pa(vk))

= p(x|z, y). (22)

and it is then clear that Eq. 16 is accomplished.
Therefore:

(X ∩
⋃

pa(Y ) = ∅) ∧ (p(x|{
⋃

pa(y)\x} ∪ {z, y}) = p(x|z, y)) ⇒ p(x|z, do(y)) = p(x|z, y). (23)
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This means that the conditional causal effect given Z of the intervention of Y on X is observable if Y
and Z block all the back-door paths from Y to X (so that there are not common drivers), and if X is
not a parent of Y .

We will now consider the fulfillment of the opposite implication. Alternatively we can examine if

¬(X ∩
⋃

pa(Y ) = ∅) ∨ ¬(p(x|{
⋃

pa(y)\x} ∪ {z, y}) = p(x|z, y)) ⇒ ¬(p(x|z, do(y)) = p(x|z, y)) (24)

holds.
Consider first that p(x|{

⋃

pa(y)\x} ∪ {z, y}) = p(x|z, y) is fulfilled but that X ∩
⋃

pa(Y ) 6= ∅. In
particular we assume that for a subset Yx ⊆ Y for each yj ∈ Yx there is a subset Xyj

⊆ X so that
xi ∈ pa(yj) if xi ∈ Xyj

. Accordingly

∏

{vk∈Y }

p(vk|pa(vk)) =
∏

{vk∈Y \Yx}

p(vk|pa(vk))
∏

{vk∈Yx}

p(vk|Xvk
, pa(vk)\Xvk

). (25)

If in this case Eq. 16 was fulfilled, given Eq. 21 we would have that:

∑

⋃
pa(Y )\{Z,X}

p({
⋃

pa(y)\x} ∪ {z, y})
∏

{vk∈Y } p(vk|pa(vk))
=

∑

X

p(x|z, y)
∑

⋃
pa(Y )\{Z,X}

p({
⋃

pa(y)\x} ∪ {z, y})
∏

{vk∈Y } p(vk|pa(vk))
. (26)

The right-hand-side of this Equation is independent of X given the summation across X. Oppositely, the
left-hand-side of the Equation is dependent ofX through the factors of vk ∈ Yx in Eq. 25, which have some
xi ∈ pa(yj). This means that the fulfillment of Eq. 16 is not compatible with p(x|{

⋃

pa(y)\x}∪{z, y}) =
p(x|z, y) and X ∩

⋃

pa(Y ) 6= ∅.
We can extend the argument above to see that in general if X ∩

⋃

pa(Y ) 6= ∅ then Eq. 16 is not
fulfilled. The summation on

⋃

(pa(Y )∪X)\Z in the denominator of Eq. 20 renders it a function only of
Z, (we refer to it by g(z)). Assuming that p(x|z, do(y)) = p(x|z, y) holds we would have:

p(x|z, y) =

∑

⋃
pa(Y )\{Z,X}

p(x|{
⋃

pa(y)\x}∪{z,y})p({
⋃

pa(y)\x}∪{z,y})∏
{vk∈Y } p(vk|pa(vk))

g(z)
. (27)

In the numerator X appears in p(x|{
⋃

pa(y)\x} ∪ {z, y}) but also it appears conditioning in the factors
∏

{vk∈Yx}
p(vk|Xvk

, pa(vk)\Xvk
) that are included in

∏

{vk∈Y } p(vk|pa(vk)). This means that the right

hand side of Equation 27 contains a term p(x|·) but also terms p(·|x, ·). Therefore the equality in Eq. 27
cannot be fulfilled for all values of X.

As the last case we now consider when X ∩
⋃

pa(Y ) = ∅ but p(x|{
⋃

pa(y)\x} ∪ {z, y}) 6= p(x|z, y).
This completes the casuistics for ¬(X ∩

⋃

pa(Y ) = ∅) ∨ ¬(p(x|{
⋃

pa(y)\x} ∪ {z, y})
= p(x|z, y)) being fulfilled. In this case we have that

∑

X p(x|{
⋃

pa(y)\x}∪{z, y}) = 1 in the denominator
of Eq. 20. If Eq. 16 was fulfilled we would have:

p(x|z, y) =

∑

⋃
pa(Y )\{Z,X}

p(x|{
⋃

pa(y)\x}∪{z,y})p({
⋃

pa(y)\x}∪{z,y})∏
{vk∈Y } p(vk|pa(vk))

∑

⋃
pa(Y )\{Z,X}

p({
⋃

pa(y)\x}∪{z,y})∏
{vk∈Y } p(vk|pa(vk))

. (28)

This Equation is of the form a(x)
∑

i ci =
∑

i bi(x)ci, where a(x) = p(x|z, y), bi(x) = p(x|{
⋃

pa(y)\x} ∪
{z, y}), and ci = p({

⋃

pa(y)\x} ∪ {z, y})/
∏

{vk∈Y } p(vk|pa(vk)). Therefore it cannot be fulfilled for all x

unless bi(x) = a(x).
Altogether we can state that:

p(x|z, do(y)) = p(x|z, y) ⇔ (X ∩
⋃

pa(Y ) = ∅) ∧ (p(x|{
⋃

pa(y)\x} ∪ {z, y}) = p(x|z, y)). (29)



7

S4 Analysis of causal effects in exemplary linear Gaussian sta-

tionary processes

We now study an example of linear Gaussian stationary processes. In this case the study of causality is
simplified because the information theoretic measures depend only on first and second order moments (see
Methods and [2]). In particular, the transfer entropy corresponds to the measure of causality proposed
by Geweke (1982) [3] as shown in Barnett et al. (2009) [4]. We consider the following linear Gaussian
autoregressive process:

xi+1 =axi + byi + νx + ǫx,i+1

yi+1 =cyi + νy + ǫy,i+1,
(30)

where the innovations (ǫ) have zero mean and E[ǫx,iǫx,j ] = σ2(ǫx)δij , E[ǫy,iǫy,j ] = σ2(ǫy)δij and E[ǫx,iǫy,j ] =
0 ∀i, j. A unidirectional causal interaction from Y to X exists for b > 0. Therefore b is the coupling
parameter associated with the effective connectivity from Y to X . We calculate the information theoretic
measures analytically using 10 time lags to account for the past Xi and Y i.

In Figure S2A-D we show some relevant information theoretic measures for the inference of causality
and analysis of causal effects in dependence on the coefficients a and b, keeping the remaining parameters
constant (c = 0.8, the variance of the innovations σ2(ǫx) = σ2(ǫy) = 1, and the levels νx = νy = 0 so that
the mean of the process is zero). The values of a and b are chosen so that the bivariate process remains
stationary. In Figure S2A we see that the transfer entropy TY→X depends only on b and is zero only for
b = 0, so that it correctly indicates the existence of a causal connections. The transfer entropy from X
to Y is always zero (Result not shown) consistently indicating the existence of unidirectional causality.
That TY→X is independent of a can be understood given that it quantifies only the extra reduction in
uncertainty once the statistical dependencies with the own past have already been accounted.

In Figure S2B we show the relative comparison of single natural causal effects following Eq. 12 of

the Results section. In particular we compare the natural causal effect of intervening to Y i =
−→
0 . Given

the existence of unidirectional causality the probability distribution p(xi+1|Y
i = yi) is associated with a

natural causal effect, and we take as a reference the distribution p0(xi+1|Y
i = yi) obtained for b = 0 and

a = 0. This means that the KL-divergence of Eq. 12 (Results) should not be considered as a measure of
strength of the causal effect when a 6= 0, but simply as a measure of the relative difference of the natural
causal effects, since also for any other value of a and b = 0 there is no causal connection from Y to X .

We see that, in contrast to the transfer entropy, this KL-divergence for the single intervention Y i =
−→
0

is much more dependent on a than on b. The natural causal effect significantly depends on how Xi+1 is
connected to its own past because this determines how the impact of the causal connections Yk → Xk+1

is accumulated. In Figure S2C we display the average KL-divergence corresponding to Eq. 13 (Results
section). Here the relative difference of each possible natural causal effect is weighted according to its
probability of occurrence, thus providing a measure of the average relative difference of all the natural
causal effects of this type going on in the system. We see that, when instead of considering the single

natural intervention Y i =
−→
0 all the interventions are averaged, the dependence in b is larger for high a.

Apart from comparing the natural causal effects for different configurations we can also examine the
impact that changes in the coupling parameter have in other probability distributions not associated with
natural causal effects. This is the type of analysis we proposed to complement the usual assessment of
the gain in effective connectivity in the DCM approach with measures that captures the impact of these
changes in some particular aspect of the dynamics. In Figure S2D we show the KL-divergence of Eq. 16
(Results). We can see that a change in the effective connectivity (related to b) has a different impact
depending on the causal connections to the own past (a).

In Figures S2E-H we show the same measures as in Figure S2A-D but now in dependence on b and
the mean µy of process Y. We keep c = a = 0.8 and the variance of the innovations σ2(ǫx) = σ2(ǫy) = 1.
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Figure S2: Causality analysis in an AR(1) model. Information theoretic measures used for the
inference of causality and the analysis of causal effects calculated for a bivariate linear Gaussian stationary
autoregressive process of order 1 (Equation 30). See the text for details about the processes. A-D:
Dependence on b and a for c = 0.8, νx = νy = 0, and σ2(ǫx) = σ2(ǫy) = 1. E-H: Dependence on b and
µy, the mean of the process Y, for c = a = 0.8, σ2(ǫx) = σ2(ǫy) = 1, and νx = 0.

We change the level νy to determine µy, and keep νx = 0 so that the changes in the mean of X result
only from the influence of Y. We take as a reference the distribution for b = 0 and µy = 0. In Figure
S2E we show the transfer entropy TY→X , which is also independent from µy. This results from the
particular form of the entropy for Gaussian variables, which is completely determined by the variance [2]
and independent of the mean.

In Figure S2F we compare again the natural causal effects resulting from the single natural intervention

Y i =
−→
0 . Given Eq. 22 (Methods section) it is clear that the KL-divergence of the single natural causal

effects are sensitive to the mean, in contrast to the transfer entropy. Nonetheless, in this case this
dependence is averaged out (Figure S2G) when considering the average difference of all the natural
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causal effects. Like for the analysis of the dependence on b and a we here find that the dependence for
particular single interventions (Figures S2B,F) can be very different from the average dependence (Figures
S2C,G). As we explained above, our aim is not to introduce a complete set of measures to quantify causal
effects, but rather to examine a framework to do so that is adaptive to the particular interests of each
analysis.

Finally, in Figure S2H we show again the KL-divergence of Eq. 16 (Results). In this case we see that
for the range of µy displayed, the impact of the change in effective connectivity is only slightly dependent
on µy. These dependencies, like the ones displayed in Figure S2D are not easy to predict from a visual
examination of the form of the model and from the gain in the coupling parameter, because they depend
in a nonlinear way on a combination of several of the parameters and not only b.
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