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SI Methods
The data used in this manuscript are largely the same as those
used in Vinck et al. (1). Experiments were performed as de-
scribed in detail in Vinck et al. (1) on three adult rhesus monkeys
(Macaca mulatta). Before the experiment, each monkey was
surgically implanted with a head post, a scleral search coil, and
a recording chamber. Recordings were made from the opercular
region of V1 (receptive field centers: 2–58 of eccentricity) and
from the superior bank of the calcarine sulcus (receptive field
centers: 8–128 of eccentricity). Recordings proceeded with 2–5
Quartz-insulated tungsten/platinum electrodes inserted indepen-
dently into the cortex through transdural guide tubes with five
precision hydraulic microdrives mounted onto an X-Y stage
(MO-95; Narishige Scientific Instrument Laboratory). Spiking
activity and the local field potential (LFP) were obtained by
amplifying (1,000×) and band-pass filtering (multiunit activity:
700–6,000 Hz; LFP: 0.7–170 Hz) the recorded signals using
a customized 32-channel headstage and preamplifier (headstage
HST16o25; headstage and preamplifier from Plexon Inc. Addi-
tional 10× signal amplification was performed by onboard am-
plifiers (E-series acquisition boards; National Instruments).
LFPs were acquired with a resolution of 1.0 ms. Spikes were
detected online by amplitude thresholding. Spike events and
corresponding waveforms were sampled at 32 kHz, and spike
waveforms were recorded for 1.2 ms.

Visual Stimulation and Behavioral Task. Stimuli were presented as
movies at 100 or 120 frames per second using a standard graphical
board (GeForce 6600 series; NVIDIA). The cathode ray tube
monitor used for presentation (CM813ET; Hitachi) was gamma
corrected to produce a linear relationship between output lu-
minance and gray values, and subtended a visual angle of 36 × 288
(1,024 × 768 pixels). At the beginning of each recording session,
receptive fields were mapped using an automatic procedure, in
which a bar was moved across the screen in 16 different direc-
tions (160 trials). Receptive field position was estimated from the
global maximum of a response matrix, at a resolution of ∼6 min
of arc. Subsequently, monkeys passively viewed drifting gratings
during fixation of a small central fixation spot. Gratings had
spatial frequencies ranging from 0.5 to 2.0 cycles per degree and
velocities ranging from 0.5 to 3.0 degrees per second. Grating
drift directions were generated randomly from a total of 16 di-
rections (steps of 22.58). The stimuli were centered over the re-
ceptive fields within a circular aperture of 8.08. After the monkey
acquired fixation, there was a prestimulus baseline of 800–1,000
ms, after which the stimulus was presented for 800–1,400 ms. To
obtain a reward, monkeys had to release the lever within 500 ms
after the color change. Trials were aborted upon fixation breaks,
or when the lever was released before the color change. Eye po-
sition was monitored continuously by a search coil system (DNI;
Crist Instruments) with a temporal resolution of 2 ms.

Spike-LFP Phase Locking and Spike Phase Analysis. Centered around
each spike recorded on one electrode, the respective data seg-
ments of the LFPs recorded on the other electrodes were cut out.
For the sustained response period starting 0.25 s after stimulus
onset we used segments of 0.15 s. The mean of each LFP data
segmentwas subtracted, to avoid leakage of the dc component into
neighboring frequencies. Each LFP data segment was multiplied
by a Hanning window before Fourier transforming it, giving the
spike-triggered LFP spectrum. For a given frequency and a given
spike, we determined the circular mean of the spike phases across

all of the LFPs from the different electrodes. We measured phase
consistency by means of the PPC, which is an unbiased estimator
of the squared spike-LFP phase-locking value (2). For example,
a PPC value of 0.01 corresponds approximately to a phase-locking
value of 0.1. The statistical significance of spike-LFP phase locking
was assessed by means of the Rayleigh test (α = 0.05).
To compute spike-LFP phase locking for the lower frequencies,

we computed spike phases relative to the 0.2–1.0 s LFP segment
from the same trial, or relative to the average LFP 0.2–1.0 s
segment from all trials with an identical stimulus, excluding the
same trial. This computation gave a frequency resolution of 1.25
Hz. Finally, we computed spike phases relative to the time point
0 s, with the phase value defined as 2πtf (SI Results).

Quantification of Orientation Tuning. We quantified orientation
selectivity (OSI) by considering the neuronal response variation
across all orientations by calculating [1 − circular variance]. This
measure reflects the resultant vector length of the spike rates
across orientations and has been validated in previous studies (3–
5). The definition of the OSI is as follows: let rm ðm ¼ 1; 2; . . . ; 8Þ
be the empirically observed average firing rate (no. of spikes per
second) over trials when the mth stimulus orientation θm = (08,
22.58,..., 157.58) was presented. Stimulus orientation is a circular
variable with a period of 1808. Define the normalized firing rates
as wm ≡ rm=

P8
m¼1rm, such that 0 ≤ wm ≤ 1 and

P8
m¼1wm ¼ 1. To

apply circular statistics to the orientation vs. firing rate data, we
need to transform the orientation variable to a circular variable
that spans the [–π, +π] interval, (i.e., for every m, we define
~θm ¼ θm2π=180 radians) (Fig. S4 A and B). The estimated OSI is
then defined as

Ŝ≡

�����
X8
m¼1

wmei
~θm

�����; [S1]

[i.e., the magnitude of the vector sum obtained by vector addition
(in the complex plane) of the eight normalized vectors wmei

~θm ].
The OSI takes values within the interval [0, 1], with a value of
0 indicating absence of orientation selectivity and a value of 1
maximum orientation selectivity. The computation of the OSI is
illustrated in Fig. S4.

Effect of Spike Rate and Spike Count on OSI. For a large number of
trials (or more generally, for long observation times), the OSI is
invariant to a linear scaling of the firing rate. As the number of
trials grows, the OSI converges to what we call the true OSI (i.e.,
the population statistic whose estimate we seek),

S≡

�����
X8
m¼1

E fwmg ei~θm
�����; [S2]

where E{} is the expected value operator. Asymptotically, as the
number of trials (and the spike count) grows, the equality
E  fwmg ¼ Efrmg=

P8
m¼1Efrmg holds. If we scale the firing rates

for all of the eight orientations by a constant factor c, then this
scaling factor falls away by division, because the equality

Efwmg ¼ cEfrmgP8
m¼1cEfrmg

¼ EfrmgP8
m¼1Efrmg

[S3]

holds, showing that in the asymptotic sampling regime, the OSI is
invariant to a linear scaling of the firing rate.
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However, for a small number of trials (or more generally a short
observation time and, correspondingly, small spike counts) the
empirically observed normalized firing rate weights will deviate
from E{wm} with some statistical error. From Jensen’s in-
equality, which states that h(E{x}) ≤ E{h(x)} if h(x) is a convex
function, it follows that the OSI estimate is a positively biased
quantity, i.e.

S ¼
�����E
(X8

m¼1

wmei
~θm

)�����≤ EfŜg [S4]

because the function h(x) = jxj is convex.
Using simulations, we directly addressed the question how the

OSI is affected by subsampling spike trains (as we do by binning
the spikes into gamma-phase bins). We generated firing rates for
every orientation by using the circular von Mises density, a
common model of orientation tuning (6). The von Mises density
for a particular stimulus orientation was defined as

f ð~θmjμ; κÞ ≡ e κcosð~θm − μÞ

2πI0ðκÞ ; [S5]

where I0(κ) is the modified Bessel function of order 0, a mere
normalization factor ensuring that the integral of the von Mises
density (across the [–π, +π] interval) amounts to 1, μ is the mean
phase, and κ is the concentration parameter that for this par-
ticular application controls the OSI, with low and high OSI
values for small and large values of κ, respectively. We first
constructed a large pool of spikes such that the OSI for this large
pool of spikes converged with very small error to its true value
(i.e., the value based on the expected spike count). For a given
level of the concentration parameter κ, we multiplied the circular
von Mises density, for every stimulus orientation, by a factor of
30, such that Efrmg ¼ 30 · f ð~θmÞ and generated a large pool of
spikes (n= 38,620) according to this model by multiplying E{rm}
by 1,000 and rounding the resulting number. The factors 30 and
1,000 are arbitrary and merely ensure that the initial pool of
spikes is large. We then drew a random subset of spikes of size M
from this sample of 38,620 spikes, and computed the OSI for this
subset. We repeated this subsampling 1,000× to obtain an esti-
mate of the expected OSI, [i.e., EfŜg], and the variance of the
OSI estimate, [i.e., VarfŜg], given the subsample size M and the
tuning level κ. The distribution of OSIs is shown for various
levels of the tuning parameter κ (0.01, 1, and 5) and subsample
sizes M = 40, 200, 103 and 104 (Fig. S5 A–C). The variance of
the OSI estimates was particularly high when the “true” OSI was
small, and was higher when we drew a smaller subset M. Fig. S5D
shows that the expected OSI value was higher when M was small.
The explanation for this finding is that if we draw a smaller
subsample, the variance of the OSI estimates increases. If the
true OSI (i.e., computed over the large pool of spikes) is near
zero, then increasing the variance will push the expected OSI
value away from zero, because the OSI is bound from below by
zero. If the true OSI is near 1, however, then the variance of the
OSI estimates is very low, such that subsampling will hardly push
the expected OSI value away from 1. It is interesting to note that
this positive bias in OSI estimation behaves similarly to the bias of
the phase-locking value and coherence estimates (2), and our
strategy of controlling for this bias by using bins of variable width is
similar to our fixed sample size phase-locking value estimate (1, 2).

Interpretation of Phase-Dependent OSI in Terms of Spike Densities.
At every phase γ ∈ [–π, π] in the gamma cycle, there is a spike
density (i.e., an expected number of spikes per second). The
average spike density across stimuli, [i.e., the density that is not
conditional on any particular stimulus, is denoted as g(γ)]. The
expected number of spikes in a small phase bin of size Δ (in

seconds) equals approximately Δg(γ). We can also define the
spike density conditional on the observation of a particular
stimulus orientation θm, denoted as g(γjθm). The spike densities
can be normalized across stimuli such that they sum to 1, [i.e.,
~gðγjθmÞ ≡ gðγjθmÞ=

P8
m¼1gðγjθmÞ for every m]. By applying Eq. 2,

we can define the gamma phase-dependent OSI as

S
�
γ
�
≡

�����
X8
m¼1

~g
�
γjθm

�
ei~θm

�����: [S6]

Because the number of trials is limited, we need to estimate
g(γjθm) by averaging over a range of phases. This was performed
using eight nonoverlapping phase bins. The advantage of this
discrete binning approach over a circular kernel-smoothing ap-
proach is that the overall number of spikes across orientations
can be controlled by varying the bin widths.

Frequency Specificity of Phase-Dependent Rate Tuning. To test for
the frequency specificity of phase-dependent orientation tuning,
we calculated OSI for each phase-binning type across frequencies
from 20 to 120 Hz. For each phase-binning type we then derived
for each frequency a modulation depth indexing the orientation
tuning across phase bins. For binning the gamma cycle into phase
bins with equal bin width or equal spike number per phase bin
(Fig. 2 A and B), we derived the modulation depth of a cosine
(peak-to-trough) fit to the OSI as a function of the phase-bin
centers. Larger cosine modulation depth indicates that the OSI is
modulated across phase bins. Statistical significance of tuning
was assessed by a permutation test. We calculated a random
distribution of n = 500 tuning indices by randomly shuffling the
phase bin assignment before obtaining the cosine modulation
depth. This random distribution shows tuning under the null
hypothesis that the OSI would not vary across phase bins. The
observed tuning index was considered significant when the
probability to observe it in the null distribution was P < 0.01.

Noise Correlations as a Function of Gamma Power and Phase. We
calculated noise correlations as the linear (Pearson) correlation
coefficient between the firing rates of the units at different
electrodes. All noise correlations were computed for trials with
identical stimuli (direction of moving grating). To avoid any in-
fluence from the drift of the grating stimulus on our correlations,
correlations were computed for firing rates that were defined for
the complete trial period (from >200 ms after stimulus onset).
For the first analysis, we calculated noise correlations for subsets
of trials median split according the LFP gamma-band power. For
the second analysis, we binned for a given neuron spike phases
into nonoverlapping bins containing equal numbers of trials. We
then computed noise correlations across trials between the spike
rates within a particular phase bin and the spike rates of a simul-
taneously recorded neuron that were defined across all phase bins.

SI Results
All analyses in the main text concentrated on rhythmic neuronal
synchronization >20 Hz. Orientation selectivity may also be
dependent on the phase of spiking relative to slower oscillations;
we investigated this in separate analyses. All low-frequency
analyses were restricted to the first two monkeys, because the
trials for the third monkey were too short (0.8 s, 0.6 s after ex-
cluding the onset transient) to obtain sufficient spectral resolu-
tion. For the epoch from 0.2 s to 1 s after stimulus onset, spikes
were locked to LFP oscillations in the 1- to 3-Hz range (Fig. S2 A
and B, black lines), with significant phase locking observed for
13 of 47 units at 2.5 Hz (monkey JE) and 1.25 Hz (monkey LI;
Rayleigh test at P = 0.05). Interestingly, spikes were more
strongly locked to the 1- to 3-Hz component of the stimulus-
locked LFP-average, which was computed over all trials with
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identical stimulus direction (Fig. 2 A and B, blue lines). Signifi-
cant delta phase locking was observed for 19 of 47 units at 2.5 Hz
(monkey JE) and 1.25 Hz (monkey LI; Rayleigh test at P =
0.05). Finally, spike phases were even more strongly locked to
stimulus onset (Fig. 2 A and B, red lines). Now, 38 of 47 units
reached significant locking values at 2.5 Hz (monkey JE) and
1.25 Hz (monkey LI; Rayleigh test at P < 0.05). Thus, the ob-
served delta oscillation was predominantly a stimulus-evoked
rhythm. Further analyses were restricted to the individual mon-
keys’ delta frequencies, with the spikes’ delta phases defined
relative to stimulus onset. Orientation tuning was significantly
modulated with delta phase for the lower frequencies (Fig. 2 C
and D). We observed a strong cosine modulation of OSI with
delta phase (mean explained variance R2 = 0.47, P < 0.001),
significant for 29.8% cells (14/47; at P = 0.05, permutation test).
Surprisingly, the phases at which the OSI peaked were not
clustering across units (Rayleigh test, P = 0.83). Thus, the

modulation of OSI with delta phase was dissociated from the
modulation of firing rate with delta phase. Finally, no linear
relationship between noise correlation and the delta oscillation
power was observed; noise correlation did not significantly differ
between high and low delta power trials (mean difference =
−0.03, Wilcoxon signed rank test, P = 0.33, 42 pairs). Finally,
although highest noise correlation was found for the mean delta-
phase bin (0.04 ± 0.021 SEM), none of the respective tests with
the other phase bins were significant (permutation test). Across
cells, OSI was not significantly related to the strength of delta
locking. We performed a multiple linear regression analysis with
Z-score–transformed delta PPC values and Z-score–transformed
gamma PPC values as two predictors (including all neurons). Z-
score–transformed gamma locking significantly predicted tuning
(P < 0.001), but delta locking did not (P = 0.46). Also, delta
locking and gamma locking were not significantly linearly related
(R = 0.21, not significant).
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Fig. S1. Spike rate and spike-LFP phase-locking spectra. (A) Average normalized spike density across time for eight stimulus orientations sorted according to
individual cells’ preferred stimulus orientation before averaging. (B–D) Average spike-LFP PPC spectra plotted as function of frequency for three monkeys.
Dashed lines denote frequency with peak phase locking in the gamma frequency band. The spectra of stimulus-induced LFP power change for the three
monkeys have been published in Lima et al. (1). For monkeys LI and JE, there was a perfect match between gamma peaks in stimulus-induced gamma and
spike-LFP PPC. For monkey NI, there was a higher diversity of peak gamma frequencies in the LFP power spectrum, as can be seen from the respective figures 7
and 9 in ref. 1. This diversity was most likely due to the fact that some recordings had been performed in the operculum and others in the calcarine sulcus [see
Lima et al. (1) for details]. The ∼50-Hz peak in the spike-LFP PPC spectrum shown here can be seen in a large number of LFP power change spectra of monkey NI
(1, 2). (E) Histogram of mean phases across spike-LFP pairs at the gamma frequency with peak PPC values. Gamma frequencies were defined for each monkey
separately as indicated in B–D. Subsequently, spike-LFP pairs were pooled across monkeys. The red line denotes the average phase at which spikes locked to the
LFP across pairs.
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Fig. S2. Low-frequency rhythms and orientation selectivity. (A and B) PPC (y axis) as a function of frequency (x axis) for monkeys JE (A) and LI (B), shown
separately for spike phases defined relative to the same-trial LFP (black), the average LFP from different trials with identical visual stimulation (blue), and
stimulus onset (red). (C and D) Depth of phase bin-dependent modulation of OSI (y axis) as a function of frequencies (x axis). Phase bins contained equal spike
counts per bin. OSI modulation depth indexes the peak-to-trough modulation depth of a cosine fit to the OSI as a function of phase bins per frequency. Gray
bars on top of each panel highlight frequencies with statistically significant phase bin-dependent tuning (see Methods and SI Results for details).

Fig. S3. Computation of OSI. (A) Polar representation of stimulus orientations θm ðm ¼ 1;2; . . . ; 8Þ with average firing rates rm. Firing rates were defined, for
this particular illustrative example, by first computing the circular von Mises density fð~θm j μ; κÞ (Eq. 5, SI Methods). The firing rate was then (the parameters
were arbitrarily chosen for this particular example) defined as rm ¼ 30 · fð~θm j μ ¼ 1:2π; κ ¼ 1Þ. (B) Polar representation of eight stimulus orientations mapped
onto the [0, 3608] interval, and associated firing rates rm. (C) Polar representation of eight orientations mapped onto the [–π, +π] interval (~θm), with associated
normalized firing rates wm ¼ rm=ð

P8
m¼1rmÞ that sum to 1. The arrow represents the vector sum; its magnitude corresponds to the OSI, which attains values in

the [0, 1] interval. In this particular simulated example, it assumes a value of 0.45.
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Fig. S4. Effect of subsampling spike trains on the OSI. (A) Normalized histogram of OSI values (normalized by dividing by maximum histogram count) ob-
tained from taking a random subsample of spikes from all of the available spikes (n = 38,620). Different lines correspond to different sizes of the subsample.
Vertical lines indicate the expected OSI value for a given subsample. Firing rates rm were generated according to a von Mises model 30 · fð~θm j μ; κÞ (Eq. 5, SI
Methods), with the concentration parameter κ = 0.01, and the number of spikes equal to 1,000 × rm (rounded). The chosen parameters 30 and 1,000 are
arbitrary and merely control the initial size of the pool of spikes. (B) Same as in A, but now with the von Mises concentration parameter κ = 1. (C) Same as in A
and B, but now with κ = 5. (D) Expected OSI value (y axis) as a function of subsample size (x axis) for different levels of the von Mises parameter κ (Bottom to
Top: κ = 0.01, 0.1, 1, 5).
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spike counts for each phase-binning type. The x axes denote the phase-bin centers. Arrows indicate the mean phase bin. Error bars denote SEM.
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