Supporting Information for

Analysis of the role of *Bacillus subtilis* σ^{M} in β -lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis

Yun Luo and John D. Helmann

Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA

This PDF file includes

Table S1 to S3

Figs. S1 to S5

Table S1. Oligos used in this study

#	Name	Sequence ¹
5244	yybT-for(xbaI)	GAG <u>TCTAGA</u> CATGGTGGGGGGGGTGATAGAAATGC
5245	yybT-rev(bglII)	GAG <u>AGATCT</u> TCATCTCTGTACGCCTCCCT
5258	yybT(1-303aa)	GAG <u>AGATCT</u> TTAGCCGTTTGGCAGCTTAATG
	rev (bglII)	
5249	disA for(xmaI)	GAG <u>CCCGG</u> GTACTTCATTAGGAGGATAATAGATG
5250	disA rev(ClaI)	GAG <u>ATCGAT</u> TCATAAGGTTTTAACCGAAATCA
5252	ybbP for(XmaI)	GAG <u>CCCGGG</u> AATCTTGGAGGACGAGGAAATG
5253	ybbP rev(ClaI)	GAG <u>ATCGAT</u> AGCGGTTGTTTAAGAATTTATCCA
5255	yojJ for(xmaI)	GAG <u>CCCGG</u> GTTCGTGAAAAGTTGGAAATTTAAACAGGAG
5256	yojJ rev(ClaI)	GAG <u>ATCGAT</u> TGTCTCATGATAGGATTCTTAATCAG
5293	yybT D420A	TGTGTAGCAACGATCACAAGCAGTGT
	up-rev	
5294	yybT D420A	ACACTGCTTGTGATCGTTGCTACACATAAGCCGTCACTCGT
	do-for	
5584	ybbP-rev-GSP3	GAACAAGCACGATGACTACA
5585	ybbP-rev-GSP4	TACCAAACAAGGAGAATATCA

¹ The endonuclease digestion sites are underlined.

Strain	Genotype	Reference / Construction
JH642	trpC2 pheA1	Lab strain
PY79	SPβ-cured prototroph strain	Lab strain
BZH73	JH642 abh::kan amyE::P _{spac} -abh cat	(Strauch et al., 2007)
	thrC::sunA'-lacZ spc	
HB10158	168 amyE::P _{spac} -abh cat	chrDNA of BZH73> 168
HB10159	168 sigM::tet amyE::P _{spac} -abh cat	chrDNA of HB10158> HB10016
HB15808	168 sigM::kan abh::spc	chrDNA of HB10131> HB10216
HB15809	168 sigM::tet abh::spc amyE:: P _{spac} -abh	chrDNA of HB10131> HB10159
	cat	
HB15810	168 sigM::tet sigX::kan amyE:: P _{spac} -abh	chrDNA of HB10103> HB10159
	cat	
ORB4271	JH642 amyE:: P _{spank(hy)} -spx spc	(Nakano et al., 2003)
ORB4342	JH642 $amyE: P_{spank(hy)} \cdot spx^{DD} spc$	(Nakano et al., 2003)
HB10392	168 amyE:: P _{spank(hy)} -spx spc	chrDNA of ORB4271> 168
HB10393	168 $amyE:: P_{spank(hy)}-spx^{DD} spc$	chrDNA of ORB4342> 168
HB10394	168 sigM::kan amyE:: P _{spank(hy)} -spx spc	chrDNA of ORB4271> HB10216
HB10395	168 sigM::kan amyE: P _{spank(hy)} -spx ^{DD} spc	chrDNA of ORB4342> HB10216
HB15817	168 sigM::kan spx::mls amyE:: P _{spank(hy)} -	chrDNA of HB10348> HB10394
	spx spc	
HB15818	168 sigM::kan spx::mls amyE: P _{spank(hy)} -	chrDNA of HB10348> HB10395
	spx ^{bb} spc	
HB15821	168 sigM::tet sigX::kan amyE:: $P_{spank(hy)}$ -	chrDNA of HB10392> HB10113
11015000	spx spc	
HB15822	168 sigM::tet sigX::kan amyE: P _{spank(hy)} -	chrDNA of HB10393> HB10113
11010272	spx spc	$h_{\rm DNA}$ of HD1021($>$ HD10252
HB10372	168 sigM::kan disA::spc	cnrDNA of HB10216> HB10353
HB10375	168 sigM::kan ybbP::tet	chrDNA of HB10216> HB10355
HB10390	168 sigM::kan ybbP::tet sigX::spc	chrDNA of HB7007> HB10375

Table S2. Strains used in the supporting information.

RL2774	PY79 clpC::tet	(Chai et al., 2010)
RL2173	PY79 clpX::spc	Win Chai
HB15839	168 clpC::tet	chrDNA RL2774> 168
HB15840	168 sigM::kan clpC::tet	chrDNA RL2774> HB10216
HB15841	168 clpX::spc	chrDNA RL2173>168
HB15842	168 sigM::kan clpX::spc	chrDNA RL2173> HB10216

Table S3. MIC values of strain 168 and its derivative mutants.

Strain #	Genotype	MIC (CEF, μg/ml)
168	WT	4
HB10216	sigM::kan	0.06
HB10113	sigM::tet sigX::kan	0.03
HB10131	abh::spc	2
HB10328	spx::spc	3
HB15808	sigM::kan abh::spc	0.03
HB10329	sigM::kan spx::mls	0.06
HB15811	sigM::kan abh::spc spx::mls	0.03
HB10353	disA::spc	3
HB10334	ybbP::tet	1
HB10335	yojJ::kan	4

Fig.S1. Complementation test of *abh*. Disk diffusion tests were performed with 6 μ g CEF. Averages and SE based on three biological replicates and two independent experiments are shown. 1 mM IPTG was added at where indicated.

Fig.S2. Complementation test of spx. Disk diffusion tests were performed with 6 µg CEF. Averages and SE based on three biological replicates and two independent experiments are shown. 1 mM IPTG was used to induce $P_{spank(hy)}$ -spx, and 0.01 mM IPTG were used to induce $P_{spank(hy)}$ - spx^{DD} . Note that Spx is a substrate of ClpXP protease, and thereby it can not be accumulated to a high level even in the presence of 1 mM IPTG. Spx^{DD} can not be degraded by ClpXP, but inducing $P_{spank(hy)}$ - spx^{DD} with more than 0.01 mM IPTG is lethal.

Fig.S3. Disk diffusion tests with clpP, clpC and clpX mutant in the backgrounds of strain WT and *sigM* mutant and 6 µg CEF. Averages and SE based on three biological replicates and two independent experiments are shown.

Fig.S4. *ybbP* is additive to *sigM* and *sigX* in CEF susceptibility. Disk diffusion tests were performed with 6 μ g CEF. Averages and SE based on three biological replicates and two independent experiments are shown.

Fig.S5. Cells observed using phase contrast and fluorescence microscopy. Cells were grown in MH medium supplemented with 1 mM IPTG to mid-log phase, washed, resuspended in fresh MH medium alone, or supplemented with 1 mM IPTG, or with 10 mM MgSO₄, and returned to 37° C incubation with vigorous shaking in a Bioscreen incubator. Cells were examined at three time points 2 h (cell morphology was indistinguishable from 4 h; data not shown), 4 h and 7 h. Cell membrane was stained with FM4-64, and colored in red. Arrows indicate lysed cells. Size bar is 10 μ m. The corresponding growth curves are shown in Fig. 7.

Reference

- Chai, Y., R. Kolter & R. Losick, (2010) Reversal of an epigenetic switch governing cell chaining in *Bacillus subtilis* by protein instability. *Mol Microbiol* **78**: 218-229.
- Nakano, S., E. Kuster-Schock, A. D. Grossman & P. Zuber, (2003) Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in *Bacillus subtilis*. *Proc Natl Acad Sci U S A* **100**: 13603-13608.
- Strauch, M. A., B. G. Bobay, J. Cavanagh, F. Yao, A. Wilson & Y. Le Breton, (2007) Abh and AbrB control of *Bacillus subtilis* antimicrobial gene expression. *J Bacteriol* 189: 7720-7732.