Nucleotide sequence of the gene, *ompW*, encoding a 22kDa immunogenic outer membrane protein of Vibrio cholerae

M.B.Jalajakumari and P.A.Manning*

Department of Microbiology and Immunology, The University of Adelaide, GPO Box 498, Adelaide, SA 5001, Australia

Submitted March 13, 1990

EMBL accession no. X51948

Vibrio cholerae contains numerous outer membrane proteins, however, they vary in their abundance and immunogenicity (1, 2). Manning et al. (3) have previously described the molecular cloning of the gene for a 22kDa outer membrane protein which is produced in minor amounts under normal laboratory conditions. The function of this protein is at present unknown, but it is very immunogenic and may correspond to one of the major immunogenic proteins detected by Western blot analysis using convalescent human sera (4).

The structural gene, ompW, for the 22kDa protein was previously localized by transposon mutagenesis of plasmid pPM440, a pBR322 clone of partially Sau3A cleaved V. cholerae DNA (3). Analysis of the various TN1725 derivatives of pPM440 suggested that the 22kDa protein was synthesized as a precursor of about 24kDa, consistent with its outer membrane location.

The nucleotide sequence determined here was derived using subclones of pPM440 in M13 mp18 and mp19, as well as by supercoil sequencing of the TN1725 insertions using oligodeoxynucleotide primers (5' GCTGTCACGAGAA-CACCGTT 3' and 5' CTTACGGATGCCCGGAAA 3') specific for the two ends of the transposon.

The nucleotide sequence is shown in Fig. 1. The translated open reading frame corresponds to a 23.474kDa precursor protein with a 21.447kDa mature form. The signal peptide and cleavage site agree well with the rules for such sequences, and the direction of transcription is consistent with the polarity effects of TN1725 insertions close to the beginning of the gene. The potential transcriptional promoter and terminator sequences have been detected. Both the -35 and -10 regions are not ideal as might be expected from the low level of expression of the protein under laboratory conditions, perhaps implying that the gene is subject to regulation. The potential terminator structure detected after the termination codon is also relatively weak.

This sequence provides the basis for further studies, in particular, for site-directed mutagenesis of the V. cholerae chromosome to construct isogenic pairs of strains for assessing the role of the protein in pathogenesis.

ACKNOWLEDGEMENTS

The authors wish to thank the National Health and Medical Research Council of Australia and the Clive and Vera Ramaciotti Foundations for their support.

REFERENCES

- 1. Manning, P.A. et al. (1982) FEMS Microbiol. Lett. 14, 159-166.
- 2. Manning, P.A. and Haynes, D.R. (1984) FEMS Microbiol. Lett. 24, 297-302.
- Manning, P.A. et al. (1985) Gene 34, 95-103.
 Sears, S.D. et al. (1984) Infect. Immun. 44, 439-444.

																ATT	
4/	ATT	AAT	GTG	CCT	AAA	TGT	AGC	AAA	TIG	ATT	TCC	TAC	AAG	111	GTG	TGA	94
			TT	GAC							та	TAA	т				
95	TTT	TTG				GTG	CGC	GCA	лсл	CAA				CAT	AGC	CCT	142
				.D.													
143	ACA	AAA	ANG	GYY	AAC	GTC											190
							Met	Lys	Gln	Thr	Ile	Cys	Leu	Ala	Val	Leu	10
		~~~	-	-	~~~	~~~	~~~		_	~~~	~~~	~	~~~		~~~	TTT	238
																Phe	26
			200								4						
239	ATT	GTG	CGC	GCG	GGT	ATT	GCC	TCG	GTA	GTA	сст	AAT	GAC	AGT	AGC	GAT	286
27	Ile	Val	λrg	Ala	Gly	Ile	Ala	Ser	Val	Val	Pro	λsn	Asp	Ser	Ser	λsp	42
	ААА															CAC His	334 58
43	Lys	vai	Leu	ASN	Thr	GIN	Ser	GIU	Leu	AIA	vai	ASI	ser	ABI	THE	H18	20
335	TTA	GGG	тта	ACG	CTT	GGC	TAT	ATG	TTT	АСТ	GAC	AAC	ATC	AGT	TTT	GAA	382
																Glu	74
		-				-	-										
	GTC																430
75	Val	Leu	Ala	Arg	Thr	Pro	Phe	Ser	His	Lys	Ile	Ser	Thr	Ser	Gly	Gly	90
							~~~			~~~			~	-	~~~	CCT	478
431 91																Pro	106
,1	GIU	Dea	913	Ser	Deu	913	nep		.,			5,5					100
479	ACC	TTT	ATG	GTC	CAA	TAC	TAC	TTT	GGT	GAA	GCT	AAT	TCG	ACA	AAC	CGT	526
107	Thr	Phe	Met	Val	Gln	Tyr	Tyr	Phe	Gly	Glu	Ala	Asn	Ser	Thr	Asn	Arg	122
527																AGC	574
123	Pro	Tyr	Val	GIY	Ala	GIY	Leu	Asn	Tyr	Thr	Thr	Phe	Pne	Asp	GIU	Ser	138
575	TTT		AGT	ACC	COT	ACT	аат	аат	GCA	TTG	AGT	GAT	тта	***	CTG	GAC	622
139																Asp	154
					•							-		•		-	
623						GCT											670
155	Asp	Ser	Trp	Gly	Leu	Ala	Ala	Asn	Val	Gly	Phe	Asp	Tyr	Met	Leu	Asn	170
671	~				-	AAC	~~~		~	-		~~~			~~~		718
171																Thr	186
1/1	veb	361	11.5	1110	1000			• • •		пp							100
719	ACG	GCA	ACC	TAC	ала	GCA	GGT	GCA	GAT	GCC	ААА	TCC	ACG	GAT	GTT	GAA	766
187																Glu	202
767																CGC	814
203	11e	Asn	Pro	Trp	vai	Phe	116	116	AIA	ery	GIÀ	ryr	гуя	rne	***		
815	CCT	ATT	TCG	***	АТА	AAG	CCG	CGA	аат	ccc	ттт	АТТ	TTT	TTG	TGG	сст	862
							200										
863																	910
911	TCA																958
959	GTC									AGA	TTT	ATC	TTT	ATG	ATT	TCT	1006
1007	TTC	TTA	TTC	TGG	CTT	CAG	ATC	AGG	т								

Figure 1. The nucleotide sequence of the region containing the gene, ompW, for the 22kDa outer membrane protein. The positions of the -35 and -10 regions of the promoter are indicated in bold type with Escherichia coli consensus sequences above. The ribosome binding site or Shine Dalgarno (S.D.) sequence is also shown. The putative cleavage site for signal peptidase I, to give the mature protein, is indicated by a vertical arrow. Horizontal lines correspond to a region of inverted repeat homology representing a potential transcriptional terminator.

^{*} To whom correspondence should be addressed