
0.0.1 Comparison with other studies for discovery of GSL and
FB pathway genes in literature The GSL and flavonoid pathways
have been subjected gene co-expression analysis by other groups
(Gachon et al., 2005; Hirai et al., 2007; Saito et al., 2008; Yonekura-
Sakakibara et al., 2008). Using pearson correlation coefficients
between combinations of the 22,263 genes, from 1,388 public
microarray datasets, Hirai et al. (2007) constructed co-expression
relationships (correlation coefficient >0.65) of Myb28 and Myb29
with other genes. In our work these two genes were used in the
seed-gene-set II to study the GSL pathway (Supplemental Figure
2). Comparing Hirai et al.’s. (2007) results (Figure 1 in Hirai et
al. (2007) ) with our work in Supplemental Figure 2, we find
11 overlapped pathway genes. Furthermore, we discovered more
pathway genes (e.g., PMSR2, GSTF11 and GS-OX1-5, Figure 3) not
listed in their Figure 1.

In another study using 54 pre-selected guide genes (encoding
13 transcription factors and 41 enzymes involved in flavonoid
and phenylpropanoid pathways), Saito et al. (2008) constructed
the co-expression networks of a general phenylpropanoid pathway
using the analytical tool Correlated genes, resulting in the
formation of four modules, representing flavonoid, anthocyanidin,
proanthocyanidin and lignin respectively (their Figure 3b). The
flavonoid module consisted of sixteen genes (their Figure 3b).
Comparing our findings from top 20 genes in Supplemental Table
4 with the 16 genes in their flavonoid module, seven pathway
(including FLS, which is one of the four seed-genes in seed-gene-
set IV) genes are commonly detected. As an aside, the three seed
genes in our work encoding for TFs (TT8, TT16 and TTG2) are
not present in their flavonoid module, but instead are found in their
proanthocyanidin module (their Figure 3b), which is downstream
of flavonoid pathway (Figure 3). However, under stress conditions,
from which our datasets are derived, their results suggested that
these three TFs could network with the flavonoid network module
(their Figure 3 (b), and the broken lines), validated our findings.

0.0.2 Data preprocessing using the RMA normalization We pre-
processed the array data from different experiments using the RMA
(Robust Multiarray Average) normalization method (Irizarry et al.,
2003a; Bolstad et al., 2003; Irizarry et al., 2003b) which is available
from Bioconductor website. This widely used normalization
method consists of three steps: background adjustment, quantile
normalization, and summarization of the probe sets. At the third
step, each probe set (consisting of probes that represent the same
gene) is assigned a single expression value. That is, the expressions
of gene replicates within a probe set are summarized into a single
measure.

After RMA normalization, majority genes will be associated with
single expression values. For example, in the microarray data with
oxidative stress (the data we used to demonstrate our method in the
paper), 99.2 % (20832 out of 21009 genes) of genes have single
expression measures after RMA normalization. All our seed genes
(seed-gene-set I, II, III and IV) are associated with single measures.

0.0.3 Robustness of our method with respect to the number of
known pathway genes To check the sensitivity of our method
with respect to the number of known pathway genes, we studied
the performance of our method by applying it to the shoot tissue
dataset subjected to oxidative stress from Section 3.2.1 using every
possible subset of size 2 and 3 of the genes from seed-gene-set II

as seed genes. The seed-gene-set II is composed of 4 regulatory
genes (ATR1, MYB28, MYB29, AKN2: these are denoted by a, b,
c and d in Supplemental Table 9 respectively). We summarized the
application results in Supplemental Table 9.

We first want to point out the importance of gene AKN2 (indexed
by d in Supplemental Table 9). With gene AKN2 used as one of the
seed genes, the performance of our method looks robust no matter
which subset we use (see all gray-shaded columns in Supplemental
Table 9). Actually, the results in all gray-shaded columns (even
when there are only two seed genes) are very close to what we found
when the whole seed-gene-set II was used. However in the absence
of gene AKN2 in the seed-gene set, the performance of our method
got worse and fluctuated dramatically. These results show that when
the critical seed genes are included, our method would perform in a
robust way even the size of seed-gene set changes. The results also
suggest that to ensure a robust discovery, the selection of seed genes
is better guided by appropriate prior biological knowledge. We also
checked the results when using only one seed gene: we calculated
pair-wise correlations between the single seed gene and all other
candidate genes and then ranked the candidate genes accordingly.
The results are summarized in Supplemental Table 10. We see that
even though gene AKN2 (gened in the table) performs better than
other genes as expected, the results are much worse than the ones
using ≥ 2 seed genes (gray-shaded columns in Supplemental Table
9).

On the other hand, however, we may not know which seed genes
are critical beforehand, when we apply the method. What can we
do in this situation? We notice a large overlapping of identified
genes in the gray-shaded columns in Supplemental Table 9. This
motivates a practical idea of using different sets/subsets of seed
genes (and different expression datasets if available) to find a set of
frequently identified pathway genes when the critical seed genes are
unknown for a more robust discovery. For example, for the shoot-
tissue data presented above, for each gene, we can first construct
a list consisting of the ranks (as a pathway candidate) of this gene
obtained when different sets of seed genes are used. Next we can
compute a new rank score for that gene as the average of top 50%
values in the list. Finally we re-rank all the genes based on the new
score. The results coming from this procedure are expected to be
robust even with the knowledge on critical seed genes unknown. In
the main text, we also studied the adverse effects of having nosiy
genes (i.e., non-pathway genes) in the seed-gene set. Using this idea
of searching frequently identified pathway ways under different sets
of seed genes, the results would also be robust against noisy seed
genes. When there are questions on which known pathway genes
to include as seed genes or on which expression datasets to use,
we suugest implementing this additional step of repeatedly running
pwsrc.knorm to derive a set of frequently identified pathway genes
under different datasets with different sets of seed genes for a robust
discovery.

0.0.4 Calculating p-values for our test statistics using chi-square
approximation To control the discovery error, we assign p-
values to each candidate gene. We know that under certain
conditions, likelihood ratio test statistics are asymptotically Chi-
square distributed with degree freedom of k, where k is the number
of seed genes. Following this, we then calculated Chi-square p-
values for all candidate genes. We further applied the Bonferroni
correction to address the multiple testing issue. We set α = 0.05 as
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our threshold of corrected p-values. The results are summarized in
Supplemental Table 11 for the GSL and FB pathways. For example,
the dataset from shoot tissues subjected to oxidative stress with GSL
pathway, we found top 98 and 152 genes are significant (whose
p-values are less than 0.05) with seed-gene-set I and II, respectively.

We note that the above calculation only provides approximate p-
values, especially considering that the bootstrapped expression data
matrices are not really independent of each other. An alternative
way is to use a permutation test. We can randomly permute the
experimental conditions of the candidate genes (keeping the order
of the experimental conditions of seed genes unchanged) and apply
our method to the permuted data. Repeating this, say 10000 times,
we will obtain an empirical distribution for each gene and then
can assign p-values accordingly. But this method is quite expensive
computationally.

REFERENCES
Gachon,C.M.M., Langlois-Meurinne,M., Henry,Y. and Saindrenan,P. (2005)

Transcriptional co-regulation of secondary metabolism enzymes in Arabidopsis:
functional and evolutionary implications. Plant Mol. Biol., 58, 229-245.

Hirai,M.Y., Sugiyama,K., Sawada,Y., Tohge,T., Obayashi,T., Suzuki,A., Araki,R.,
Sakurai,N., Suzuki,H., Aoki,K., Goda,H., Nishizawa,O.I., Shibata,D. and Saito,K.
(2007) Omics-based identification of Arabidopsis Myb transcription factors
regulating aliphatic glucosinolate biosynthesis. Proc. Natl. Acad. Sci. USA, 104,
6478-6483.

Saito,K., Hirai,M.Y. and Yonekura-Sakakibara,K. (2008) Decoding genes with
coexpression networks and metabolomics ‘majority report by precogs’. Trends Plant
Sci., 13, 36-43.

Yonekura-Sakakibara,K., Tohge,T., Matsuda,F., Nakabayashi,R., Takayama,H.,
Niida,R., Watanabe-Takahashi,A., Inoue,E. and Saito,K. (2008) Comprehensive
flavonol profiling and transcriptome coexpression analysis leading to decoding
genemetabolite correlations in arabidopsis. Plant Cell, 20, 2160-2176.

Irizarry, R.A, Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U.
and Speed, T.P. (2003a) Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics, 4, 249-264.

Bolstad, B.M., Irizarry R. A., Astrand, M., and Speed, T.P. (2003) A Comparison of
normalization methods for high density oligonucleotide array data based on bias and
variance. Bioinformatics, 19, 185-193.

Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B. and Speed, T.P. (2003b)
Summaries of affymetrix GeneChip probe level data, Nucleic Acids Research,
31:e15.

Fig. 1. (Supplemental Figure 1) Graphical summary of the simulation
study. Simulation datasets are generated with different experiment
dependencies (a) 10%, (b) 33%, (c) 50% and (d) 67%. For each plot,
precision and recall are calculated from the top n (n = 1, , 15) genes in the
list obtained by pwsrc.knorm with seed gene set composed of four pathway
genes (red dots) or four pathway genes and 2 non-pathway (noisy) genes.

2



Table 1. Supplemental Table 1. Description of the experiment conditions used for the A. thaliana microarray dataset with
different types of stress.

(a) Oxidative stress

Experiment number (shoot tissue) Treatment Time points Experiment number (root tissue)

1 Control 0 h 14
2 Control 0.5 h 15
3 Control 1h 16
4 Control 3 h 17
5 Control 6 h 18
6 Control 12 h 19
7 Control 24 h 20
8 MV, 10µM 0.5 h 21
9 MV, 10µM 1 h 22
10 MV, 10µM 3 h 23
11 MV, 10µM 6 h 24
12 MV, 10µM 12 h 25
13 MV, 10µM 24 h 26

(b) Wouding, (c) UV-B light and (d) Drought stresses

Experiment number (shoot tissue) Treatment Time points Experiment number (root tissue)

1 Control 0 h 16
2 Control 0.25 h 17
3 Control 0.5 h 18
4 Control 1h 19
5 Control 3 h 20
6 Control 6 h 21
7 Control 12 h 22
8 Control 24 h 23
9 Stress 0.25 h 24
10 Stress 0.5 h 25
11 Stress 1 h 26
12 Stress 3 h 27
13 Stress 6 h 28
14 Stress 12 h 29
15 Stress 24 h 30
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Table 2. Supplemental Table 2. List of 64 Glucosinolate (GSL) metabolism pathway genes.

Group AGI code Gene name

Regulator genes AT1G18570 MYB51
AT1G66340 ETR1
AT3G54640 TRP3/TSA1
AT4G12030 BAT5
AT5G03280 EIN2
AT5G07690 MYB29
AT5G07700 MYB76
AT5G46330 FLS2
AT5G60890 ATR1/Myb34
AT5G61420 MYB28
AT1G07640 OBP2
AT3G09710 IQD1

GSL biosynthesis pathway (verified by experiment) AT1G12140 GS-OX5
AT1G16400 CYP79F2
AT1G16410 CYP79F1
AT1G18590 SOT17
AT1G24100 UGT74B1
AT1G62540 GS-OX2
AT1G62560 GS-OX3
AT1G62570 GS-OX4
AT1G65860 GS-OX1
AT1G74090 SOT18
AT1G74100 SOT16
AT2G20610 SUR1
AT2G22330 CYP79B3
AT2G25450 GS-OH
AT2G43100 IPMI2
AT3G19710 BCAT4
AT3G49680 BCAT3
AT3G58990 IPMI1/AtLeuD2
AT4G03050 AOP3
AT4G03060 AOP2
AT4G13430 AtLeuC1
AT4G13770 CYP83A1
AT4G31500 CYP83B1/SUR2/ATR4
AT4G39950 CYP79B2
AT5G05260 CYP79A2
AT5G14200 AtIMD1
AT5G23010 MAM1
AT5G23020 MAM3
AT5G57220 CYP81F2
AT1G31180 IPMDH1
AT4G30530 GGP1

GSL biosynthesis pathway (predicted) AT1G78370 GSTF20
AT5G07460 PMSR2
AT5G36160
AT2G30860 GSTF9
AT2G30870 GSTF10
AT2G31790 UGT74C1
AT3G03190 GSTF11

GSL biosynthesis pathway (co-substrate pathway) AT2G14750 AKN1
AT4G39940 AKN2
AT4G23100 PAD2
AT1G65880 BZO1
AT5G65940 CHY1
AT1G04580 AAO4
AT5G63980 FIERY1/SAL1

GSL-catabolic pathway AT5G44070 PCS1
AT1G47600 TGG4
AT1G54030 MVP1
AT1G59870 PEN3
AT2G44490 PEN2
AT1G54040 ESP
AT3G14210 ESM1
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Table 3. Supplemental Table 3. The number of identified GSL pathway
genes in the A. thaliana microarray dataset from tissues subjected to UV-B
light stress using (a) shoot tissue only, seed-gene-set I, (b) shoot tissue only,
seed-gene-set II, (c) shoot and root tissues, seed-gene-set I, (d) shoot and root
tissues, seed-gene-set II.

Top pwsrc.knorm pwsrc.null pearson.mean pearson.max GLM

(a) 10 3 2 1 0 1
20 5 2 1 1 2
30 5 2 2 1 3
50 5 2 3 1 3
100 8 3 4 3 5

(b) 10 6 1 3 2 3
20 9 2 3 4 4
30 9 2 3 5 5
50 10 2 4 6 6
100 13 3 5 8 8

(c) 10 7 1 1 0 6
20 10 1 2 0 7
30 10 1 3 0 7
50 10 1 3 0 7
100 11 1 3 1 7

(d) 10 8 0 1 1 6
20 11 0 1 2 9
30 12 0 1 2 10
50 16 0 1 2 11
100 18 1 4 2 11

Table 4. Supplemental Table 4. The number of identified GSL pathway
genes in the A. thaliana microarray dataset from tissues subjected to drought
stress using (a) shoot tissue only, seed-gene-set I, (b) shoot tissue only, seed-
gene-set II, (c) shoot and root tissues, seed-gene-set I, (d) shoot and root
tissues, seed-gene-set II.

Top pwsrc.knorm pwsrc.null pearson.mean pearson.max GLM

(a) 10 3 2 1 3 0
20 4 2 2 3 1
30 5 2 3 6 1
50 6 3 6 6 2
100 12 3 7 8 2

(b) 10 5 2 4 5 3
20 8 3 4 8 3
30 8 3 6 9 4
50 8 4 8 12 6
100 12 9 15 16 6

(c) 10 9 0 3 2 5
20 10 0 3 3 5
30 12 0 3 3 9
50 15 0 3 3 12
100 17 0 3 5 14

(d) 10 5 0 4 1 5
20 8 1 4 1 5
30 9 1 4 1 6
50 10 2 6 1 7
100 12 2 7 2 9
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Table 5. Supplemental Table 5. List of flavonoid biosynthesis (FB) and phenylpropanoid
biosynthesis pathway genes related to our study.

Pathways Flavonoid biosynthesis (FB) Phenylpropanoid biosynthesis

AGI code (gene name) AT4G09820 (TT8) a,b AT2G37040 (PAL1)
AT5G23260 (TT16)a,b AT3G53260 (PAL2)
AT5G24520 (TTG1)a AT5G04230 (PAL3)
AT2G37260 (TTG2)b AT3G10340 (PAL4)
AT5G08640 (FLS)a,b AT2G30490 (C4H)
AT5G13930 (CHS) AT1G51680 (4CL1)
AT3G55120 (CHI) AT3G21240 (4CL2)
AT3G51240 (F3H) AT1G65060 (4CL3)
AT5G07990 (F3′H) AT3G21230 (4CL5)
AT5G42800 (DFR) AT1G15950 (CCR1)
AT1G61720 (BAN) AT2G23910 (CCR6)
AT5G17220 (GST)
AT3G59030 (TT12)
AT5G35550 (TT2)
AT1G06000 (UGT89C1)
AT5G17050 (UGT78D2)
AT1G78570 (RHM1)
AT4G14090 (UGT75C1)
AT1G30530 (UGT78D1)
AT3G29590 (A5G6999MaT)
AT5G54160 (OMT1)
AT3G62610 (MYB11)
AT2G47460 (MYB12)
AT5G49330 (MYB111)
AT1G56650 (PAP1)
AT1G66390 (PAP2)

aseed-gene-set III
bseed-gene-set IV

6



Table 6. Supplemental Table 6. The number of pathway genes identified from flavonoid biosynthesis
(FB) and phenylpropanoid biosynthesis pathways in the A. thaliana microarray dataset from shoot and
root tissues subjected to (a) oxidation, (b) wounding, (c) UV-B light and (d) drought stresses. The number
of identified genes from phenylpropanoid pathways is designated in the parenthesis adjacent to the total
number of identified genes.

seed-gene-set Top rank pwsrc.knorm pwsrc.null pearson.mean pearson.max GLM

(a) III 10 7 (2) 1 0 4 5 (1)
20 8 (3) 2 0 4 6 (1)
30 10 (4) 2 0 4 7 (2)
50 11 (4) 2 0 5 (1) 8 (3)

IV 10 7 (2) 2 3 5 (1) 4 (1)
20 9 (3) 3 3 6 (1) 5 (1)
30 10 (4) 3 3 6 (1) 6 (1)
50 11 (4) 4 4 6 (1) 7 (2)

(b) III 10 6 (1) 3 0 4 5 (1)
20 9 (3) 3 0 4 5 (1)
30 9 (3) 4 0 4 5 (1)
50 11 (4) 4 0 4 7 (2)

IV 10 6 (1) 4 0 4 4 (1)
20 9 (2) 4 1 (1) 4 5 (1)
30 10 (3) 4 2 (2) 4 6 (1)
50 11 (4) 4 2 (2) 5 (1) 7 (2)

(c) III 10 6 (1) 1 0 2 4 (1)
20 8 (3) 1 0 3 4 (1)
30 11 (4) 1 0 3 4 (1)
50 11 (4) 1 0 4 (1) 5 (2)

IV 10 7 (2) 1 0 5 (1) 4 (1)
20 8 (3) 1 0 6 (1) 4 (1)
30 10 (3) 1 0 6 (1) 4 (1)
50 11 (4) 1 1 (1) 6 (1) 4 (1)

(d) III 10 6 (2) 0 0 2 4 (1)
20 9 (3) 1 0 3 5 (1)
30 10 (3) 1 0 4 6 (2)
50 11 (3) 1 0 4 6 (2)

IV 10 6 (2) 2 1 4 5 (1)
20 9 (3) 2 2 4 5 (1)
30 10 (3) 2 2 4 6 (2)
50 13 (4) 2 2 4 6 (2)
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Table 7. Supplemental Table 7. List of identified genes from top 20 list in
Table 4. Each gene is designated by the original pathway to which it belongs.

Method seed-gene-set III seed-gene-set IV

pwsrc.knorm AT1G65060 (4CL3)b AT1G65060 (4CL3)b

AT1G78570 (RHM1)a AT3G51240 (F3H)a

AT3G51240 (F3H)a AT1G78570 (RHM1)a

AT3G55120 (CHI)a AT3G55120 (CHI)a

AT5G13930 (CHS)a AT5G13930 (CHS)a

AT2G23910 (CCR6)b AT2G23910 (CCR6)b

AT5G17050 (UGT78D2)a AT5G07990 (F3′H)a

AT5G07990 (F3′H)a AT5G17050 (UGT78D2)a

AT2G37040 (PAL1)b AT2G37040 (PAL1)b

pwsrc.null AT1G78570 (RHM1)a AT1G78570 (RHM1)a

AT5G13930 (CHS)a

pearson.mean AT4G14090 (UGT75C1)a

AT5G42800 (DFR)a

pearson.max AT1G78570 (RHM1)a AT1G78570 (RHM1)a

AT5G13930 (CHS)a AT5G13930 (CHS)a

AT3G55120 (CHI)a AT3G55120 (CHI)a

AT3G51240 (F3H)a

GLM AT1G65060 (4CL3)b AT1G65060 (4CL3)b

AT1G78570 (RHM1)a AT3G51240 (F3H)a

AT3G51240 (F3H)a AT3G55120 (CHI)a

AT3G55120 (CHI)a AT1G78570 (RHM1)a

AT5G13930 (CHS)a AT5G13930 (CHS)a

a Flavonoid biosynthesis (FB) pathway genes
b Phenylpropanoid biosynthesis pathway genes

Table 8. Supplemental Table 8. The number of pathway genes identified from flavonoid
biosynthesis (FB) and phenylpropanoid biosynthesis pathways in the A. thaliana
microarray dataset from shoot and root tissues subjected to drought stresses. For
comparison, different seed genes sets are used: (a) seed-gene-set III, (b) seed-gene-set III,
ATR1, AKN2, (c) seed-gene-set III, MYB28, AKN2, (d) seed-gene-set III, ATR1, MYB28,
AKN2.

Top rank (a) (b) (c) (d)

10 6 3 3 3
20 9 5 5 4
30 10 6 7 5

Table 9. Supplemental Table 9. The number of pathway genes identified using the subsets of seed-gene-set
II.

Top rank a,b a,c a,d b,c b,d c,d a,b,c a,b,d a,c,d b,c,d a,b,c,d

10 3 0 6 3 7 8 1 7 5 7 6
20 4 0 11 3 13 14 2 10 10 12 11
30 4 0 14 3 15 14 3 13 12 13 14
50 6 0 15 5 17 17 4 15 14 15 14
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Table 10. Supplemental Table 10. The number of pathway genes
identified using single seed genes.

Top rank a b c d

10 0 1 0 3
20 0 2 0 4
30 0 3 0 4
50 0 5 0 6

Table 11. Supplemental Table 11. The number of top candidate genes whose p-values are less than or equal to the threshold α = 0.05
for the GSL and FB pathways.

GSL pathway GSL pathway GSL pathway GSL pathway FB pathway FB pathway
Data seed-gene-set I seed-gene-set II seed-gene-set I seed-gene-set II seed-gene-set III seed-gene-set IV

(shoot) (shoot) (shoot and root) (shoot and root) (shoot and root) (shoot and root)

Oxidation 98 152 88 123 30 28
Wounding 50 104 45 82 25 20
UV-B light 63 262 43 62 32 29
Drought 203 336 73 75 40 25
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Fig. 2. (Supplemental Figure 2) Simplified schematic representation
of glucosinolate (GSL) metabolic pathway. Enzymes and regulators are
indicated by bold, capital letters. The GSL pathway genes from the top 30
lists identified by different methods are designated by different markers. A.
thaliana dataset from shoot tissues subjected to oxidative stress and seed-
gene-set II are used. Compared to other methods, our method uniquely finds
six genes, BAT5, BCAT4, MAM1, CYP79F1, CYP79F2 and UGT74C1, and
misses three genes, OBP2, SOT18 and AOP2.

Fig. 3. (Supplemental Figure 3)Graphical summary of the A. Thaliana
microarray dataset subjected to oxidative stress; (a) shoot tissue, seed-
gene-set I, (b) shoot tissue, seed-gene-set II, (c) shoot and root tissues,
seed-gene-set I, (d) shoot and root tissues, seed-gene-set II. Precision and
recall are calculated from the top 10, 20, 30, 50 and 100 genes in the list
obtained by different methods.

Fig. 4. (Supplemental Figure 4) Graphical summary of the A. Thaliana
microarray dataset subjected wounding stress; (a) shoot tissue, seed-gene-set
I, (b) shoot tissue, seed-gene-set II, (c) shoot and root tissues, seed-gene-
set I, (d) shoot and root tissues, seed-gene-set II. Precision and recall are
calculated from the top 10, 20, 30, 50 and 100 genes in the list obtained by
different methods.
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Fig. 5. (Supplemental Figure 5) Graphical summary of the A. Thaliana
microarray dataset subjected to UV-B light stress; (a) shoot tissue, seed-
gene-set I, (b) shoot tissue, seed-gene-set II, (c) shoot and root tissues, seed-
gene-set I, (d) shoot and root tissues, seed-gene-set II. Precision and recall
are calculated from the top 10, 20, 30, 50 and 100 genes in the list obtained
by different methods.

Fig. 6. (Supplemental Figure 6) Graphical summary of the A. Thaliana
microarray dataset subjected to drought stress; (a) shoot tissue, seed-gene-set
I, (b) shoot tissue, seed-gene-set II, (c) shoot and root tissues, seed-gene-
set I, (d) shoot and root tissues, seed-gene-set II. Precision and recall are
calculated from the top 10, 20, 30, 50 and 100 genes in the list obtained by
different methods.

Fig. 7. (Supplemental Figure 7) Simplified schematic representation
of flavonoid and phenylpropanoid biosynthesis pathways. Enzymes and
regulator are indicated by bold, capital letters. Pathway genes identified by
pwsrc.knorm from top 20 list in Table 4 are marked by dotted circles.
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