MATERIALS AND METHODS

Database Searching and Cloning of CIP

We screened for novel cardiac-specific genes in silico by performing a BLAST search with ESTs from mouse embryonic heart cDNA libraries in the database as described previously ¹. One of the cDNA sequences identified in this screen (Access number AA919489) corresponded to the 3' untranslated region (3'-UTR) of the CIP transcript and was found in a cDNA library of E13.5 mouse embryonic hearts. This short cDNA fragment (273 nt) was used as a probe to screen a mouse embryonic heart cDNA library. Several cDNA clones were identified. Among them, the longest clone is 1336 nt in length. Polymerase chain reaction (PCR)-based cloning was further used to identify additional cDNA isoforms.

CIP Reporter Mice

The CIP reporter line with a retroviral gene trap cassette inserted into mouse genome chromosome 9 (between chr9: 77,046,001 and 77,046,002) was generated and obtained from Texas A&M Institute for Genomic Medicine (TIGM). The gene trap cassette containing the selectable marker β -geo, a functional fusion between the β -galactosidase and neomycin resistance gene, was inserted into the putative third intron of the CIP gene (Online Figure III).

In Situ Hybridization and Northern Analysis

Whole-mount and section in situ hybridization and Northern analyses were performed as described ^{1,2}. The 273 nt cDNA fragment corresponding to the 3'-UTR of the CIP gene was used as a probe to perform both whole-mount and tissue section *in situ* hybridization on staged mouse embryos.

For whole-mount in situ hybridization, E9.5 mouse embryos were dissected in PBS buffer and fixed in M buffer (100mM MOPS pH 7.4, 2mM EGTA, 1mM MgSO4, and 3.7% formaldehyde) at 4°C overnight. After bleaching in M buffer with 6% hydrogen peroxide for 48 hr at room temperature, embryos were dehydrated through an ascending methanol series in PBS (25, 50, 75 and 100% methanol) and stored in 100% methanol at -20°C until needed. Embryos were rehydrated through a descending methanol series in PBT (PBS plus 1% Tween 20) and PBT, permeabilized in PBT containing proteinase K (10µg/ml in PBT) for 30 minutes at room temperature. After post-fixing in 4% paraformaldehyde in PBT, embryos were washed three times in PBT, rinsed once each in 0.1M triethanolamine (pH 8) and in 0.1M triethanolamine plus acetic anhydride (2.5 ul/ml). After incubation with prehybridization solution (0.3M NaCl, 20mM Tris pH 8.0, 1mM EDTA, 0.1M DTT, 1X Denharts, 10% dextran sulfate, 50% formamide, 250µg/ml yeast tRNA, and 100µg/ml salmon sperm DNA) for 2 hr at 60°C, embryos were hybridized with DIG-labeled riboprobes in hybridization solution (prehybridization solution plus 0.5-1µg/ml riboprobe) at 60°C overnight. After hybridization, embryos were washed two times (30 min each) with prehybridization solution at the hybridization temperature, followed by washing two times (30 min each)

with 50% formamide, 2X SSC at the same temperature. Embryos were then treated with RNase A (1μg/ml) and RNase T1 (1 unit/ml) for 30 min at 37°C. After a final wash with 0.2X SSC, 1% Tween 20 at 60°C, embryos were incubated with PBT plus 10% heat inactivated sheep serum (Sigma, St. Louis, MO) for 2 hr at room temperature and then with alkaline phosphatase conjugated Fab anti-DIG solution (1 to 2000 dilution in PBT plus 10% sheep serum) overnight at 4°C. Embryos were washed at least 8 times with PBT (1 hour each) and left in PBT overnight at 4°C to completely wash out excess amounts of alkaline phosphatase conjugated Fab. Color reaction was performed by washing embryos three times for 10 min each with buffer A containing 100 mM Tris pH 9.5, 50mM MgCl2, 100mM NaCl, 1% Tween 20, and 2mM levamisol, followed by incubating with detection solution (buffer A plus 4.5μl/ml nitroblue tetrazolium and 3.5μl/ml 5-bromo-4-chloro-3-indolyl-phosphate toluidinium) for various times at room temperature. When the color reaction was complete, embryos were washed twice with buffer A, once with PBT, and then post-fixed in 4% paraformaldehyde in PBT.

For Northern blot analysis, adult mouse multiple tissue northern blot purchased from Clontech (Palo Alto, CA) was used. A DNA probe containing 3'-UTR of the CIP gene was labeled with a-32P-dATP using a random primed DNA labeling kit (Boehringer Mannheim, Indianapolis, IN). The hybridization was performed at 68°C for 1 hour in an ExpressHyb hybridization solution (Clontech, Palo Alto, CA). The filter was then washed twice in 2×SSC, 0.05% SDS at room temperature for 30 minutes each, followed by 30 minutes at 50°C in 0.1×SSC, 0.1% SDS. The filter was then exposed to X-ray film at -70°C with the presence of intensifying screens.

Constructs, Cell Culture, and Luciferase Reporter Assays

Hela, COS7 and HEK293T cells were cultured in DMEM supplemented with 10% FBS in a 5% CO2 atmosphere at 37°C. Luciferase reporter constructs fused with the MEF2C enhancer were as reported and is a generous gift of Dr. Brian Black (University of California, San Francisco) ³. Transfections were performed with either FuGENE6 (Roche) or Lipofectamine (Invitrogen) reagents according to manufacturers instruction. Unless otherwise indicated, 100 ng of reporter plasmid and 100 ng of each activator plasmid were applied. 48 hours after transfection, cell extracts were prepared and luciferase activity was determined. For luciferase assay, normalized luciferase expression from triplicate samples in 12-well plates relative to LacZ expression was calculated, and the results are expressed as fold activation over the value relative to the control (Luciferase reporter and empty pcDNA). The CIP adenoviral expression construct (Ad-CIP) was constructed as previously described ⁴. The CIP adenoviral expression construct (Ad-CIP) contained a cDNA encoding amino acids 1-309 of mouse CIP. Ad-CIP adenoviral constructs were N-terminal FLAG tagged.

Tissue Dissociation and Cell Sorting of Mouse Embryos

E10.5 embryonic hearts were isolated by microdissection and dissociated to single cells by collagenase digestion as previously described ⁵. Isolated cells were FACS sorted into GFP positive and GFP negative populations. Sorted cells were collected into Trizol

(Invitrogen) and frozen at -20°C for RNA isolation.

Immunochemistry and β-Gal Staining

Staged mouse embryos were dissected out, collected and fixed in 4% paraformaldehyde at 4°C for 4 hours. After washing in PBS, embryos were treated in 15% and 30% sucrose for 2 hours each and embedded in OCT. About 5–8 μm cryostat sections were collected on positively charged slides. Sections were washed in PBS, blocked in 5% serum/PBS, and subjected to immunostaining. Antibody sources were as follows: GFP (Invitrogen); PECAM (BD Biosciences); Nkx2-5 (Santa Cruz); Wt1 (Santa Cruz); Cardiac Troponin T (Tnnt2) (generous gift of Dr. Jim Lin, University of Iowa); Cardiac Troponin I (Tnni3) (Santa Cruz); Actn2 (Sigma); Isl1 (DSHB, University of Iowa); β-galatosidase (MP Biomedical). Alexa-488 and 594 secondary antibodies (Invitrogen). Fluorescently stained slides were counterstained with DAPI and imaged with an FV1000 confocal microscope (Olympus). For β-gal staining, samples were stained with a solution containing 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, and 1 mg/ml X-gal substrate at 37°C for 12 hours after fixation.

Quantitative RT-PCR and Western blot analyses

Total RNAs were isolated using Trizol Reagent (Invitrogen) from cells and tissue samples. For Quantitative RT-PCR, 2.0 μg RNA samples were reverse-transcribed to cDNA by using random hexamers and MMLV reverse transcriptase (Invitrogen) in 20 μl reaction system. In each analysis, 0.1 μl cDNA pool was used for quantitative PCR. For Western blot analyses, cell extractions were cleared by 10,000×g centrifugation for 10 min at 4°C. Samples were subsequently separated by SDS/PAGE and transferred to PVDF membranes that were incubated with 5% milk and Anti-FLAG (1:1,000, Sigma); Anti-Myc (1:1,000, Santa Cruz); β-tubulin (1:10,000, Sigma) overnight at 4°C and then washed three times with TBST buffer before adding secondary antibody. Polyclonal antibodies against the CIP protein were generated by immunizing rabbits with CIP proteins which were expressed and purified as GST-CIP fusion proteins in bacterial. Specific protein bands were visualized by using ECL (Invitrogen) reagents.

Coimmunoprecipitation Assays

COS7 cells were transiently transfected with plasmids encoding FLAG-tagged CIP and Myc-tagged Isl1 proteins with FuGENE6 (Roche). Cells were harvested 48 h after transfection in lysis buffer composed of PBS containing 0.5% Triton X-100, 1 mM EDTA, 1 mM PMSF, and complete protease inhibitors (Roche). After a brief sonication and removal of cellular debris by 10,000×g centrifugation for 10 min at 4°C, FLAG-tagged CIP proteins were precipitated with anti-FLAG antibodies and protein A/G beads and associated proteins analyzed by Western blotting with anti-Myc antibodies.

In vitro GST Protein-Binding Assays

Plasmids encoding a GST fusion with CIP were transformed into BL21 plus cells

(Stratagene). The cells were grown at 37°C in $2\times YT$ medium to an optical density of 1.0. Isopropyl- β -D-thiogalactopyranoside (50 μ M) was then added to the culture to induce protein expression. After being shaken at room temperature for 4 h, the cells were harvested and the GST protein was purified with glutathione beads. Isl1 proteins translated *in vitro* were labeled with ^{35}S methionine by using a TNT T7 reticulocyte lysate system (Promega). Glutathione beads conjugated with GST fusion protein were incubated with 10 μ l of TNT product at 4°C for 2 h in 500 μ l of GST-binding buffer (20 mM Tris, pH 7.3/150 mM NaCl/0.5% Nonidet P-40/protease inhibitor/1 mM phenylmethylsulfonyl fluoride). The beads were washed three times with GST binding buffer. 50 μ l of SDS loading buffer was then added to the beads. After boiling, 20 μ l was loaded onto an SDS/PAGE gel and analyzed by autoradiography.

Cardiomyocyte Culture

Neonatal rat cardiomyocytes were prepared as previously described ⁴. Briefly, Neonatal rat cardiomyocytes were isolated by enzymatic disassociation of 1- to 2-day old neonatal rat hearts with the Neonatal Cardiomyocyte Isolation System (Worthington Biochemical Corp.). Cardiomyocytes were plated differentially for 2 hours to remove fibroblasts. Cells were plated on 1% gelatin-coated plates in medium containing 10% horse serum and 5% fetal calf serum (FCS). 18 hours after plating, cells were changed into serum-free medium and infected with adenovirus (Ad-LacZ for control and Ad-CIP) at a multiplicity of infection (m.o.i.) of 25. 24 hours later, cells were treated with hypertrophic agent, phenylephrine (PE), by changing to the PE-contained serum-free medium. Cells were harvested 24 hours after PE treatment for RNA isolation or 48 hours after PE treatment for immunochemistry.

REFERENCES:

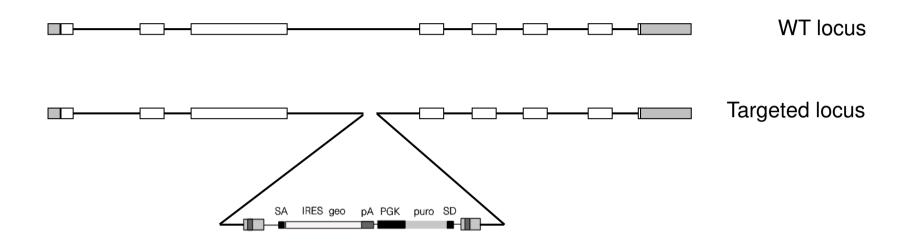
- Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. *Cell.* 2001;105:851-862.
- Wang DZ, Reiter RS, Lin JL, Wang Q, Williams HS, Krob SL, Schultheiss TM, Evans S, Lin JJ. Requirement of a novel gene, Xin, in cardiac morphogenesis. *Development*. 1999;126:1281-1294.
- 3. Dodou E, Verzi MP, Anderson JP, Xu SM, Black BL. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. *Development*. 2004;131:3931-3942.
- 4. Xing W, Zhang TC, Cao D, Wang Z, Antos CL, Li S, Wang Y, Olson EN, Wang DZ. Myocardin induces cardiomyocyte hypertrophy. *Circ Res.* 2006;98:1089-1097.
- 5. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A,

Ikeda S, Chien KR, Pu WT. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. *Nature*. 2008;454:109-113.

Supplemental Material

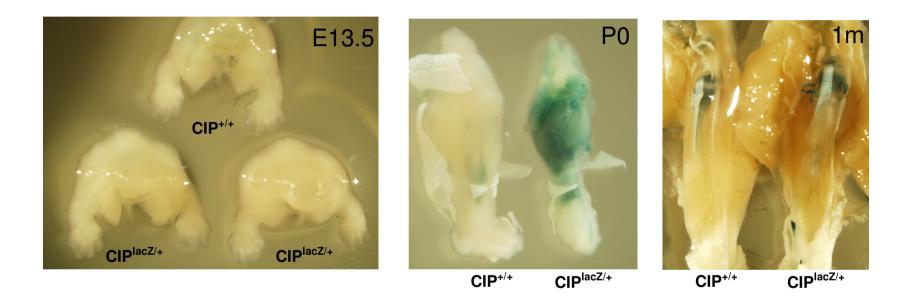
Online Figure I

```
QUERY
                    PRAA
 043167/1-13
                    KRK
                                NTL
CPD1 DROME/1-13
                    IKK
                                KGS
 045912/1-13
                    KKG
                                PSA
CPD1 DROME 6/1-13
                    TKG
                                GGA
CAB40849 3/1-13
                    SRGA
                                KSP
Q38778_1/1-13
                    GRP
                                KDP
AAC68776/1-13
                    KKP
                                EDS
 059212/1-13
                    EKG
                                STR
Q43877_1/1-13
                    PRP
ORC1 SCHPO/1-13
                    SRG
015030 1/1-13
                    ARA
AAD21618 3/1-13
                    KRG
CAB42096 2/1-13
                    KRRP
 Q22173/1-13
                    KKT
                                RSQ
 P92954/1-13
                    KRG
                                KTQ
                    GRP
Q43877 3/1-13
                                ART
CPD1 DROME 1/1-13
                    VKK
                                SVG
                              S MED
                    PRK
 049276/1-13
                           PPGS GGT
049694 1/1-13
                    KRN
 049694/1-13
                    KKK
                                AAD
 Q22381/1-13
                    QKR
                                DAA
Q40725 12/1-13
                    KRGA
                              K
AAD21618 6/1-13
                    KRK
Q40725_3/1-13
                    GRG
CPD1 DROME 9/1-13
                        S
                    TKP
P91155/1-13
O45912_7/1-13
                    PRA
                    VLK
CPD1 DROME 8/1-13
                    GRGL
015030 2/1-13
                    PKR
                                FFK
 065795/1-13
                    AKP
 Q50887/1-13
                    PKK
049276 1/1-13
                    GRA
CPD1_DROME_2/1-13
                   KRKA
                              H QPS
 043095/1-13
                    TRK
                              T
                                IAS
                              A HAM
 082964/1-13
                    KRG
 Q06339/1-13
                    AKK
 JH0797/1-13
                    ARK
CPD1 DROME 5/1-13
                    PKK
HMGC HUMAN 1/1-13
                    KRP
 Q01086/1-13
                    KRG
AAC2 DICDI/1-13
                           PPKM DEE
                    KRK
049276 2/1-13
                    RKK
                                DRI
                             Y NEK
P76546/1-13
                    PKK
015026 1/1-13
                    KRR
Q40725 4/1-13
                           PRKN ATP
                    KRGV
HMGC HUMAN 2/1-13
                           PKGS KnK
                    KRP
023142 1/1-13
                    EKK
                           PPGS
                                SSK
YN06 CAEEL/1-13
                    KRR
                                EEA
PRH PETCR/1-13
                    KRS
000536 1/1-13
                    TGK
                                EKA
CPD1_DROME_7/1-13
Consensus/60%
                    GGO
                                SKI
                    .+.RGRP.Ks
```


Online Figure I. Sequence alignment between the putative AT_hook DNA binding domain in CIP and other known AT hook DNA binding domain.

Online Figure II

```
MELEKREK
                          RSLL
                                     NKNLE-EKLTVSAGGSEAKPLIFTFVPTVRRLPTHTQLADTSKFLVKI
Human
                                    NKNLE-EGVTVŠPGDPEAKPLIFTFVPTLRRLPTHIĞLADTŠKFLVKI
NEKLE-ERVTF-----
                MFFGKHFP
                          -GSSLKR
Mouse
                                                                                         -PEEP
                                                                                              65
                MEFEKHEQ-
                          -GNALKK
Rat
                                    Dog
                          -GSLL
                                                                                         PEEP
                                                                                              63
Cow
                MDFEKHGK-
                          -GSLL
                MEFEKHEK--GSLL
                                                                                         PEEP
                                                                                              63
Horse
                MEFERHGKDLGSSL
                                     ASNLL-TS
Opossum
Chicken
                Xenopus
Zebrafish
                Human
Mouse
                                                                                              135
Dog
Cow
                Horse
Opossum
Chicken
Xenopus
Zebrafish
               : .
Human
Mouse
Rat
Dog
Horse
Opossum
Chicken
Xenopus
Zebrafish
                                                              -KDNTLEPPVELYFPAQLRQQTEELCATIDK 270
----- 205
                KHGQQYKTKSSYKAFAAIPTNTLLLEQKALDEPAKT-ESVS-
Human
Mouse
Rat
                KHGQQYKTKSSYKAFAAIPTNTLLLEQKALDEPART-ESNS
                                                              KASVSDLPVELCFPAQLRQQTEELCATIDK
                KHGQQYKTKSSYKAFAAIPTNTLLLEQKALDEPAKT-EGVF
RHGQ-----ALDEPAKT-DSIS
                                                                                              270
174
                                                              KDNALDLPLELCFPAQLRQQTEELCATIDK
Dog
                                                              KDSTLDPPLE
Cow
                KHGQQYKTKSSYKAFAA I PTNTLLLEQKALDEPAKT-DSVF
Horse
                                                              KDKTLDPPLEFCSPAQLRQQTEELCATIDK
                Opossum
                                                                                              174
Chicken
                                                           -Q-FDETTETRSEVYSPALLRQQTEEVCAVIDE
Xenopus
                TQNETYKIKSTYKALAAIPTNTLLLEQQAIDEEVSKKEALLNPADNYSWEDPHAEMCSPAQLRQQTAELYATIDE
Zebrafish
                Human
Mouse
Rat
Dog
Cow
Horse
Opossum
Chicken
Xenopus
                VLEDTIQTRQSNHVNNAML—KSLAAEALRQQTSSPSPKLLGRETRYASSPFQPSVTTEKTMTKPGVIRPVIITS 238
Zebrafish
                RILLKKE-EEVYEPNPFSKYLEDNSDLFSEQDVT
                                                                 VPPKPVSLHPLYQTKLYPPAKSLLHPQ 401
Human
                RILLKKE-EEVYEPNPFSKYLEDNSDLFSEUDVI-
KLLLRKD-EEVYEPNPFSKYLEDNSGLFSEGAPD-
KLFLKKE-EEVYEPNPFSKYLEDNSDFFSEGDVT-
KILLKKE-EEVYEPNPFSKYLEDNSDFFSEGDVT-
KILLKKE-EEVYEPNPFSKYLEDNSDLFSEGDVT-
KILLKKE-EEIYEPNPFSKYLEDNSDLFSEGDVT-
KILLKKE-EEIYEPNPFSKYLEDTSGLFAGGDVT-
RIAQQK-E-ELYQPNPFKKYLEDTSGLFAGGDVT-
TYTEKK-DD-DCSSNPFSHFTSSRTDFDDARSK-
RFTFDQ-D-FFFHPNPFKILHGNKSNRYQYKFVS(
Mouse
Rat
                                                                                              320
                                                                                              401
277
                                                                  VPPKPLSLHPLYQTRLCPPAKSLLPPQ
Dog
                                                                 APPKPVSLHPLYQTRLHPPAKSLLRPQ
Cow
                                                                                              401
278
362
Horse
                                                                  VPHKPVSLHPLYQTRLYPPAKSLLHPQ
                                                                 -SLHDATPLHPLYKTKPFPPAKSLLYPQ
Opossum
Chicken
Xenopus
                RFTEDQ-D-EEFHPNPFK1LHGNKSNRYQYKFVSGGLCAEAPADAPADSDPQPSERQEDYKSRLA-
Zebrafish
                Human
                                                                                  ΕQ
                                                                                    458
                                                                                    309
321
459
312
Mouse
                TLSQADCLTPGPFSHLSSFSLSDEQGNSHTLFSGNT-YNKLSHPMVAIPEHETLDSK
TRPHADGLTPGPFSHLSSFSLSDEQENSHTLFSHNA-YN------TLSHADCLTPGPFSHLSSFSLSDEQDNSHTLFSHNA-YNKLSHPMVAIPEHEILDSK
                                                                                  EQ
KQ
Dog
Cow
Horse
                                                                                     459
                NLSYTDCLTPGPFSHLSSVSLGDGHVNSPTSFSHNRLYN-
                                                                                     319
Opossum ( )
                                                                                     387
                                                          -SHP I VP I PENETLSSKEVTNERGSV
Chicken
                                                                          -KRTHQHTDL
Xenopus
                                       -STQD-
                                                                -VPSA
                                                                            VSTHETHT
                                                                                     317
Zebrafish
```


Online Figure II. Amino acid sequence alignment of CIP orthologs in multiple species. The AT hook DNA binding domain (in box) is highly conserved during evolution.

Online Figure III

Online Figure III. Targeting strategy of CIP reporter line. The expression of β -gal-Neo (geo) fusion gene is driven by endogenous CIP promoter. An internal ribosome entry site (IRES) allows for translation initiation of β -gal-Neo fusion gene.

Online Figure IV

Online Figure IV. β -gal staining of forelimb/hindlimb in multiple stages of CIP reporter line showing the transient expression of CIP in skeletal muscle.