SUPPORTING INFORMATION

Kinetic Analysis of the Bypass of a Bulky DNA Lesion

Catalyzed by Human Y-family DNA Polymerases

Shanen M. Sherrer, Laura E. Sanman, Cynthia X. Xia, Eric R. Bolin, Chanchal K. Malik, Georgia

Efthimiopoulos, Ashis K. Basu, and Zucai Suo*

Table of Contents for Supporting Information				
Figure/Table	Title	Page		
Supplementary Figure 1	Chemical structure of dG ^{AP} .	S-2		
Supplementary Figure 2	The percentage of dG ^{AP} bypass catalyzed by human Y-family DNA polymerases.	S-3		
Supplementary Figure 3	EMSA for the binding of hPol η to 5'-[³² P]-labeled DNA.	S-4		
Supplementary Figure 4	Single-turnover kinetics of correct dCTP incorporation onto 20- mer/26-mer catalyzed by hPolk.	S-5		
Supplementary Figure 5	Single-turnover kinetics of correct dCTP incorporation onto 20- mer/26-mer catalyzed by hPoli.	S-6		
Supplementary Figure 6	Single-turnover kinetics of correct dCTP incorporation onto 20- mer/26-mer catalyzed by hRev1.	S-7		
Supplementary Figure 7	Effectiveness of a DNA trap.	S-8		
Supplementary Table 1	Kinetic parameters of nucleotide incorporation onto undamaged DNA catalyzed by hPoln.	S-9		
Supplementary Table 2	Kinetic parameters of nucleotide incorporation onto undamaged DNA catalyzed by hPolk.	S-10		
Supplementary Table 3	Kinetic parameters of nucleotide incorporation onto undamaged DNA catalyzed by hPolt.	S- 11		
Supplementary Table 4	Kinetic parameters of nucleotide incorporation onto undamaged DNA catalyzed by hRev1.	S-12		
Supplementary Table 5	Biphasic kinetic parameters of correct nucleotide incorporations catalyzed by hPol _η .	S-13		

Supplementary Figure 1. Chemical structure of dG^{AP}.

Supplementary Figure 2. The percentage of dG^{AP} bypass catalyzed by human Y-family DNA polymerases. The quantification of gel images for the running start assays (Figure 1) is for hPol η (\blacksquare), hPol κ (\square), and hPol ι (\circ).

Supplementary Figure 3. EMSA for the binding of hPoln to 5'-[³²P]-labeled DNA. The inset is the gel image for the binding of hPoln to 20-mer/26-mer-dG^{AP}. The plots for 20-mer/26-mer (\blacksquare) and 20-mer/26-mer-dG^{AP} (\bullet) were fit to Equation 2 to yield $K_{d, DNA}$ of 23 ± 2 nM for 20-mer/26-mer and 7.9 ± 0.3 nM for 20-mer/26-mer-dG^{AP}.

Supplementary Figure 4. Single-turnover kinetics of correct dCTP incorporation onto 20-mer/26-mer catalyzed by hPolk. (A) A preincubated solution of hPolk (300 nM) and radiolabeled 20-mer/26-mer (30 nM) at 37 °C were rapidly mixed with increasing concentrations of dCTP (6.25 μ M, •; 12.5 μ M, •; 25 μ M, \Box ; 50 μ M, Δ ; 100 μ M, •; 200 μ M, \circ ; 400 μ M, \diamond) for various time intervals. Each time course corresponding to each dCTP concentration was fit to a single exponential curve to obtain k_{obs} . (B) Plot of calculated k_{obs} as a function of dCTP concentration, which was fit to a hyperbola curve to $K_{d, dCTP}$ (46 \pm 6 μ M) and k_p (1.7 \pm 0.1 s⁻¹).

Supplementary Figure 5. Single-turnover kinetics of correct dCTP incorporation onto 20-mer/26-mer catalyzed by hPol₁. (A) A preincubated solution of hPol₁ (130 nM) and radiolabeled 20-mer/26-mer (20 nM) at 37 °C were rapidly mixed with increasing concentrations of dCTP (10 μ M, •; 20 μ M, •; 40 μ M, Δ ; 80 μ M, Δ ; 160 μ M, \circ ; 350 μ M, •) for various time intervals. Each time course corresponding to each dCTP concentration was fit to a single exponential curve to obtain k_{obs} . (B) Plot of calculated k_{obs} as a function of dCTP concentration, which was fit to a hyperbola curve to $K_{d, dCTP}$ (133 ± 8 μ M) and k_p (0.21 ± 0.01 s⁻¹).

Supplementary Figure 6. Single-turnover kinetics of correct dCTP incorporation onto 20-mer/26-mer catalyzed by hRev1. (A) A preincubated solution of hRev1 (120 nM) and radiolabeled 20-mer/26-mer (30 nM) at 37 °C were rapidly mixed with increasing concentrations of dCTP (0.25 μ M, •; 1 μ M, •; 2 μ M, \Box ; 4 μ M, Δ ; 10 μ M, •; 20 μ M, •) for various time intervals. Each time course corresponding to each dCTP concentration was fit to a single exponential curve to obtain k_{obs} . (B) Plot of calculated k_{obs} as a function of dCTP concentration, which was fit to a hyperbola curve to $K_{d, dCTP}$ (5.4 ± 1.2 μ M) and k_p (0.78 ± 0.07 s⁻¹).

Supplementary Figure 7. Effectiveness of a DNA trap. A preincubated solution of hPol η (130 nM), unlabeled DNA trap D-1 21/41-mer (5 μ M, Table 1), and 5'-radiolabeled 21-mer/26-mer (20 nM) was mixed with a solution dGTP (0.8 mM) for various times before being quenched with EDTA (0.37 M). The gel image revealed negligible nucleotide incorporation within 33 s.

Supplementary Table 1. Kinetic parameters of nucleotide

dNTP	<i>K_{d, dNTP}</i> (μM)	k_p (s^{-1})	$k_p/K_{d, \text{ dNTP}}$ (μ M ⁻¹ s ⁻¹)	Fidelity ^a	
Templa	te dG (20-me	er/26-mer)			
dCTP	85 ± 11	48 ± 2	5.6×10 ⁻¹	-	
dATP	350 ± 36	$(9.5 \pm 0.4) \times 10^{-1}$	2.7×10 ⁻³	4.8×10 ⁻³	
dGTP	37 ± 8	$(4.0 \pm 0.2) \times 10^{-2}$	1.1×10 ⁻³	2.0×10 ⁻³	
dTTP	494 ± 70	3.3 ± 0.2	6.6×10 ⁻³	1.2×10 ⁻²	
Template dC (21-mer/26-mer)					
dGTP	46 ± 8	39 ± 2	8.4×10 ⁻¹	-	
dATP	242 ± 25	3.4 ± 0.1	1.4×10 ⁻²	1.7×10 ⁻²	
dCTP	119 ± 21	2.2 ± 0.1	1.8×10 ⁻²	2.1×10 ⁻²	
dTTP	712 ± 73	3.3 ± 0.2	4.6×10 ⁻³	5.4×10 ⁻³	

incorporation onto undamaged DNA catalyzed by hPolų.

^{*a*}Calculated as $(k_p/K_{d, dNTP})_{incorrect}/[(k_p/K_{d, dNTP})_{correct} + (k_p/K_{d, dNTP})_{incorrect}]$.

Supplementary Table 2. Kinetic parameters of nucleotide incorporation

dNTP	K _{d, dNTP}	k_p	$k_p/K_{d, \text{ dNTP}}$	F: 1 - 1:49	
	(µM)	(s ⁻¹)	$(\mu M^{-1}s^{-1})$	riaelity	
Templa	te dG (20-mer/	'26-mer)			
dCTP	46 ± 6	1.7 ± 0.1	3.7×10 ⁻²	-	
dATP	539 ± 71	$(3.2 \pm 0.2) \times 10^{-1}$	6.0×10^{-4}	1.6×10 ⁻²	
dGTP	388 ± 29	$(4.1 \pm 0.1) \times 10^{-1}$	1.1×10 ⁻³	2.9×10 ⁻²	
dTTP	693 ± 66	$(5.5 \pm 0.3) \times 10^{-1}$	8.0×10 ⁻⁴	2.1×10 ⁻²	
Template dC (21-mer/26-mer)					
dGTP	87 ± 9	$(9.9 \pm 0.3) \times 10^{-1}$	1.1×10 ⁻²	-	
dATP	596 ± 121	$(2.4 \pm 0.2) \times 10^{-2}$	4.0×10 ⁻⁵	3.6×10 ⁻³	
dCTP	1343 ± 474	$(9.1 \pm 2.0) \times 10^{-2}$	6.8×10 ⁻⁵	6.1×10 ⁻³	
dTTP	645 ± 84	$(2.5 \pm 0.2) \times 10^{-2}$	3.9×10 ⁻⁵	3.5×10 ⁻³	

onto undamaged DNA catalyzed by hPolk.

^{*a*}Calculated as $(k_p/K_{d, dNTP})_{incorrect}/[(k_p/K_{d, dNTP})_{correct} + (k_p/K_{d, dNTP})_{incorrect}].$

dNTP	K _{d, dNTP}	k_p	k _p /K _{d, dNTP}		
	(µM)	(s ⁻¹)	$(\mu M^{-1}s^{-1})$	Fluenty	
Template dG (20-mer/26-mer)					
dCTP	133 ± 8	$(2.1 \pm 0.1) \times 10^{-1}$	1.6×10 ⁻³	-	
dATP	667 ± 105	$(1.0 \pm 0.1) \times 10^{-2}$	1.5×10 ⁻⁵	9.3×10 ⁻³	
dGTP	323 ± 25	$(5.3 \pm 0.2) \times 10^{-3}$	1.6×10 ⁻⁵	9.9×10 ⁻³	
dTTP	447 ± 35	$(9.1 \pm 0.3) \times 10^{-2}$	2.0×10 ⁻⁴	1.1×10 ⁻¹	
<i>Template dC (21-mer/26-mer)</i>					
dGTP	117 ± 7	$(19 \pm 0.4) \times 10^{-2}$	1.6×10 ⁻³	-	
dATP	ND	ND	-	-	
dCTP	ND	ND	-	-	
dTTP	783 ± 44	$(13 \pm 0.4) \times 10^{-2}$	1.7×10 ⁻⁴	9.6×10 ⁻²	

Supplementary Table 3. Kinetic parameters of nucleotide incorporation onto undamaged DNA catalyzed by hPol₁.

^{*a*}Calculated as $(k_p/K_{d, dNTP})_{incorrect}/[(k_p/K_{d, dNTP})_{correct} + (k_p/K_{d, dNTP})_{incorrect}].$

ND denoted 'not determined'.

Supplementary Table 4. Kinetic parameters of nucleotide incorporation onto undamaged DNA catalyzed by hRev1.

dNTP	<i>K_{d, dNTP}</i> (μM)	k _p (s ⁻¹)	$k_p/K_{d, \text{ dNTP}}$ (μ M ⁻¹ s ⁻¹)	Fidelity ^a
Templat	e dG (20-mer	r/26-mer)		
dCTP	5.4 ± 1.2	$(7.8 \pm 0.7) \times 10^{-1}$	1.4 ×10 ⁻¹	-
dTTP	80 ± 14	$(2.1 \pm 0.1) \times 10^{-1}$	2.6×10 ⁻²	1.6×10 ⁻¹
dATP	99 ± 17	$(70 \pm 0.4) \times 10^{-4}$	7.1×10 ⁻⁵	5.1×10 ⁻⁴
dGTP	256 ± 14	$(14 \pm 0.3) \times 10^{-1}$	5.3×10 ⁻³	3.6×10 ⁻²

^{*a*}Calculated as $(k_p/K_{d, dNTP})_{incorrect}/[(k_p/K_{d, dNTP})_{correct} + (k_p/K_{d, dNTP})_{incorrect}].$

Supplementary Table 5. Biphasic kinetic parameters of correct nucleotide incorporations catalyzed by hPolų.

DNA Substrate	A ₁	<i>k</i> ₁	A_2	<i>k</i> ₂	
(Primer/Template)	(n M)	(s ⁻¹)	(n M)	(s ⁻¹)	
21-mer/26-mer	$7.8 \pm 0.3 (39\%)^a$	72 ± 4.9	9.5 ± 0.3 (47%)	4.4 ± 0.5	
21-mer/26-mer-dG ^{AP}	2.9 ± 0.1 (14%)	11 ± 1.2	1.1 ± 0.2 (5.3%)	0.2 ± 0.02	
^a Calculated as (reaction amplitude/20 nM)×100.					
All given errors were derived from data fitting.					