# **Supporting Information**

## Synthesis and evaluation of sulfonylnitrophenylthiazoles (SNPT's) as thyroid hormone receptor-coactivator interaction inhibitors

Jong Yeon Hwang, Ramy R. Attia, Fangyi Zhu, Lei Yang, Andrew Lemoff, Cynthia Jeffries, Michele C. Connelly, and R. Kiplin Guy

### **Table of Contents**

| Supplementary, Table 1. Summary of SNPT analogues |            |
|---------------------------------------------------|------------|
| Experimental Section                              | <b>S</b> 3 |
| Compound evaluation                               | <b>S</b> 3 |
| Spectra data of intermediates                     | <b>S6</b>  |
| Spectra data of final compounds                   | <b>S10</b> |

#### Supplementary, Table 1. Summary of SNPT analogues.

|                     |                  |            |           | TR <sup>β</sup> vs<br>SRC2-2 | TR <sup>α</sup> vs<br>SRC2-2 | PPAR <sup>Y</sup><br>vsDRIP-2 | Transcripion<br>inhibition | Cytotoxicity<br>HepG2 | Permeability | Solubility    |
|---------------------|------------------|------------|-----------|------------------------------|------------------------------|-------------------------------|----------------------------|-----------------------|--------------|---------------|
| No                  | Registration No. | Purity (%) | Yield (%) | (IC50, HM)                   | (IC50, PM)                   | (IC50, PM)                    | at 5 PM (%)                | (EC50, PM)            | x10° cm/s    | ( <b>µ</b> M) |
| <b>2</b> {4, 1,5}   | SJ000561913-1    | 100.0      | 30.4      | 0.31±0.17                    | 0.19±0.08                    | >60                           | 8.1±0.6                    | >27                   | 1322±159     | 6.4±0.3       |
| <b>2</b> {4, 1, 4}  | SJ000561912-1    | 99.6       | 25.7      | 0.66±0.57                    | 0.1±0.01                     | >60                           | 2.3±2.7                    | >27                   | 791±101      | 1.6±0.9       |
| <b>2</b> {1, 1, 4}  | SJ000561848-1    | 100.0      | 59.0      | 1.3±0.6                      | 2.4±1.3                      | >60                           | 11.9±6.2                   | >27                   | 287±17       | 5.0±0.7       |
| <b>2</b> {5, 1, 4}  | SJ000561889-1    | 98.3       | 66.7      | 1.9±0.3                      | 1.6±0.4                      | >60                           | no inhibition              | 17.9±0.9              | 971±210      | 2.3±0.8       |
| <b>2</b> {3, 1, 4}  | SJ000561686-1    | 99.5       | 66.7      | 1.6±0.9                      | 2.6±2.1                      | >60                           | 11.6±1.3                   | 11.2±0.6              | 657±43       | 50.1±1.1      |
| <b>2</b> {1, 1, 1}  | SJ000561846-1    | 100.0      | 62.2      | 1.7±0.9                      | 1.1±0.6                      | >60                           | no inhibition              | 6.3±0.3               | 379±39       | 0.7±0.1       |
| <b>2</b> {2, 1, 4}  | SJ000561632-1    | 99.7       | 70.5      | 1.8±0.6                      | 2.5±1.0                      | >60                           | 9.8±6.0                    | 10.6±0.5              | 280±42       | 18.0±0.9      |
| <b>2</b> {4, 1,2}   | SJ000561920-1    | 99.7       | 26.7      | 2.1±1.6                      | 0.43±0.14                    | >60                           | 15.4±5.2                   | >27                   | 8±1          | 1.0±0.8       |
| <b>2</b> {3, 1,2}   | SJ000561696-1    | 99.2       | 72.8      | 2.4±1.1                      | 2.5±1.2                      | >60                           | 42.1±5.9                   | 11.5±5.6              | 949±195      | 2.8±0.5       |
| <b>2</b> {4, 1, 16} | SJ000561923-1    | 100.0      | 25.0      | 2.8±1.8                      | 1.0±0.6                      | >60                           | 26.0±2.0                   | >27                   | 271±79       | 1.2±0.9       |
| <b>2</b> {4, 1,5}   | SJ000561849-1    | 100.0      | 17.5      | 3.3±1.3                      | 1.7±0.7                      | >60                           | 5.8±7.1                    | >27                   | 702±34       | 38.8±1.1      |
| <b>2</b> {4, 1, 14} | SJ000561921-1    | 100.0      | 26.0      | 3.3±1.4                      | 0.46±0.27                    | >60                           | 17.9±4.7                   | >27                   | 1499±536     | 1.2±0.7       |
| <b>2</b> {4, 1, 15} | SJ000561922-1    | 100.0      | 29.2      | 3.4±2.5                      | 0.3±0.1                      | >60                           | 24.7±3.3                   | >27                   | 221±21       | 0.8±0.1       |
| <b>2</b> {4, 1, 11} | SJ000561918-1    | 100.0      | 30.8      | 4.2±2.9                      | 1.1±1.2                      | >60                           | 33.4±1.4                   | 14.5±0.7              | 84±17        | 0.2±0.5       |
| <b>2</b> {4, 1, 9}  | SJ000561917-1    | 100.0      | 35.8      | 5.2±2.7                      | 1.1±1.2                      | >60                           | 17.5±6.8                   | >27                   | 43±6         | 0.4±0.4       |
| <b>2</b> {2, 1,2}   | SJ000561637-1    | 99.6       | 65.8      | 7.1±1.9                      | 3.5±                         | >60                           | 42.1±5.6                   | 13.9±1.5              | 1416±41      | 5.7±1.0       |
| <b>2</b> {2, 1,5}   | SJ000561633-1    | 99.6       | 68.1      | 7.4±3.4                      | 5.6±2.7                      | >60                           | 8.1±5.2                    | >27                   | 912±205      | 6.7±0.4       |
| <b>3</b> {6, 1, 13} | SJ000561764-1    | 98.2       | 57.3      | 8.2±2.0                      | 4.7±1.7                      | >60                           | 14.6±2.8                   | 13.3±0.7              | 1619±260     | 2.4±0.1       |
| <b>2</b> {1, 1, 16} | SJ000561860-1    | 100.0      | 36.8      | 8.5±4.4                      | 3.2±1.1                      | 30.2±9.6                      | 26.7±2.6                   | >27                   | 1031±288     | 2.4±0.4       |
| <b>2</b> {4, 1, 3}  | SJ000561911-1    | 100.0      | 31.3      | 10.1±4.5                     | 0.77±0.54                    | >60                           | no inhibition              | >27                   | 376±42       | 23.3±0.6      |
| <b>2</b> {1, 1, 14} | SJ000561858-1    | 100.0      | 57.7      | 10.9±2.6                     | 3.0±1.6                      | 42.6±10.9                     | 15.4±3.9                   | >27                   | 1187±200     | 3.8±0.1       |
| <b>2</b> {3, 1, 5}  | SJ000561687-1    | 99.4       | 69.1      | 11.5±9.1                     | n.d.                         | >60                           | 27.1±6.6                   | >27                   | 1394±345     | 34.8±0.3      |
| <b>2</b> {2, 1, 1}  | SJ000561525-1    | 100.0      | 33.0      | 11.8±4.5                     | n.d.                         | >60                           | 17.7±2.3                   | 6.2±0.5               | 245±53       | 1.1±0.4       |
| <b>2</b> {1, 1,2}   | SJ000561857-1    | 100.0      | 69.6      | 15.3±9.1                     | n.d.                         | 31.7±10.2                     | 34.9±3.3                   | >27                   | 1491±203     | 2.7±0.4       |
| <b>3</b> {6, 1, 1}  | SJ000561753-1    | 98.3       | 82.6      | 16.3±11.8                    | 29.4±18.8                    | >60                           | 33.1±4.9                   | >27                   | 599±73       | 1.2±0.4       |
| <b>2</b> {2,2,4}    | SJ000561645-1    | 99.5       | 52.6      | 16.7±4.0                     | 21.3±4.0                     | >60                           | 4.9±3.6                    | >27                   | 1500±163     | 2.8±2.1       |
| <b>2</b> {3, 3, 4}  | SJ000561732-1    | 100.0      | 53.2      | 19.3±9.6                     | 30.4±15.1                    | >60                           | no inhibition              | >27                   | 548±109      | 0.6±0.2       |
| <b>2</b> {2,3,4}    | SJ000561665-1    | 98.4       | 50.4      | 20.0±11.4                    | n.d.                         | n.d.                          | n.d.                       | 19.9±16.4             | 416±1        | 2.2±0.6       |
| <b>2</b> {2, 1, 15} | SJ000561639-1    | 99.4       | 139.1     | 27.1±4.8                     | 6.8±3.9                      | n.d.                          | n.d.                       | >27                   | n.d.         | n.d.          |
| <b>3</b> {6, 1, 17} | SJ000561769-1    | 99.3       | 70.5      | 27.4±9.8                     | 4.9±2.5                      | n.d.                          | n.d.                       | >27                   | n.d.         | n.d.          |
| <b>2</b> {3,2,4}    | SJ000561709-1    | 100.0      | 75.7      | 20.1±6.2                     | 25.1±13.4                    | n.d.                          | n.d.                       | >27                   | 1373±48      | 1.4±0.1       |
| <b>2</b> {4, 1,8}   | SJ000561916-1    | 100.0      | 20.8      | 20.6±9.5                     | 1.9±1.2                      | n.d.                          | n.d.                       | 12.7±0.6              | n.d.         | n.d.          |
| <b>2</b> {2, 1, 14} | SJ000561638-1    | 99.4       | 49.5      | 20.8±5.7                     | 12.0±8.3                     | n.d.                          | n.d.                       | >27                   | 822±84       | 3.9±0.2       |
| <b>2</b> {4, 1, 13} | SJ000561856-1    | 100.0      | 24.1      | 21.0±2.8                     | 3.0±0.9                      | n.d.                          | n.d.                       | 14.6±2.4              | 598±119      | 1.1±0.3       |
| <b>3</b> {6, 1,2}   | SJ000561765-1    | 99.0       | 75.7      | 21.8±8.0                     | 13.9±7.4                     | n.d.                          | n.d.                       | 5.9±1.3               | 2884±873     | 1.0±1.0       |
| <b>3</b> {6, 1, 14} | SJ000561766-1    | 98.0       | 53.6      | 21.9±6.5                     | 10.3±5.4                     | n.d.                          | n.d.                       | >27                   | 1025±105     | 4.2±1.4       |
| <b>2</b> {3, 1, 15} | SJ000561698-1    | 99.5       | 65.4      | 22.1±12.8                    | 8.7±7.1                      | n.d.                          | n.d.                       | >27                   | 1448±294     | 1.2±0.3       |
| <b>2</b> {1, 1, 15} | SJ000561859-1    | 100.0      | 58.2      | 22.4±6.7                     | n.d.                         | n.d.                          | n.d.                       | >27                   | n.d.         | n.d.          |
| <b>2</b> {4, 1, 1}  | SJ000561910-1    | 100.0      | 38.8      | 31.4±16.6                    | n.d.                         | n.d.                          | n.d.                       | >27                   | 77±42        | 0.9±1.9       |
| <b>3</b> {6, 1, 12} | SJ000561763-1    | 98.1       | 60.5      | 32.4±6.5                     | 17.7±8.4                     | n.d.                          | n.d.                       | 11.4±0.6              | 730±45       | 32.0±0.7      |
| <b>2</b> {4, 1, 6}  | SJ000561914-1    | 99.7       | 17.5      | 34.7±6.9                     | 8.3±3.0                      | n.d.                          | n.d.                       | >27                   | 921±117      | 59.4±1.2      |
| <b>2</b> {4, 1, 9}  | SJ000561852-1    | 100.0      | 59.1      | 35.4±8.3                     | 16.3±10.9                    | n.d.                          | n.d.                       | >27                   | 207±41       | 1.6±2.3       |
| <b>3</b> {6, 1, 4}  | SJ000561755-1    | 97.1       | 57.5      | 37.6±7.6                     | 38.8±9.5                     | n.d.                          | n.d.                       | >27                   | 253±5        | 51.4±1.2      |
| <b>2</b> {4, 1, 7}  | SJ000561915-1    | 100.0      | 50.4      | 39.3±8.1                     | 1.2±0.5                      | n.d.                          | n.d.                       | 13.2±0.7              | n.d.         | n.d.          |
| <b>3</b> {6, 1, 16} | SJ000561768-1    | 98.6       | 87.7      | 39.9±7.9                     | 20.8±5.9                     | n.d.                          | n.d.                       | >27                   | 1174±159     | 3.3±1.0       |
| <b>2</b> {1, 1, 3}  | SJ000561847-1    | 100.0      | 50.0      | 40.5±9.8                     | 22.2±                        | n.d.                          | n.d.                       | >27                   | 40±4         | 15.8±0.7      |
| <b>3</b> {6, 1, 15} | SJ000561767-1    | 98.1       | 78.6      | 43.6±9.8                     | 21.6±7.3                     | n.d.                          | n.d.                       | >27                   | 1179±45      | 3.5±0.4       |
| <b>2</b> {2, 1, 13} | SJ000561636-1    | 98.4       | 20.9      | 44.3±15.7                    | 17.2±10.2                    | n.d.                          | n.d.                       | 4.6±1.5               | n.d.         | n.d.          |
| <b>2</b> {4, 1, 19} | SJ000561925-1    | 99.4       | 21.1      | 45.5±24.5                    | 22.6±14.7                    | n.d.                          | n.d.                       | >27                   | 23±5         | 0.8±0.6       |
| <b>2</b> {2, 1, 11} | SJ000561527-1    | 100.0      | 37.0      | 45.9±12.0                    | 30.8±12.1                    | n.d.                          | n.d.                       | >27                   | 991±277      | 2.0±0.3       |
| <b>2</b> {2,2,5}    | SJ000561646-1    | 99.5       | 83.9      | 54.4±14.6                    | 62.6±33.9                    | n.d.                          | n.d.                       | >27                   | 1315±145     | 2.5±0.7       |
| <b>2</b> {5, 1, 5}  | SJ000561890-1    | 99.0       | 89.6      | 59.5±30.3                    | 32.5±12.0                    | n.d.                          | n.d.                       | >27                   | 253±129      | n.d.          |

 $IC_{50}$  values were determined using data from two independent experiments in triplicate.  $EC_{50}$ , solubility and PAMPA were determined from an triplicate experiment. \*nd: not determined

### **Experimental Section**

#### **Compound evaluation**

*Protein expression and purification.* hTRβ LBD (His<sub>6</sub>; residues T209-D461) was expressed in BL21 (DE3) (Invitrogen) (10 × 1L culture) at 20 °C, 0.5 mM isopropyl-1-thio-b-D-galactopyranoside added at  $A_{600} = 0.6$  (17). When the  $A_{600}$  reached 4, cells were harvested, resuspended in 20 ml of buffer/1 liter of culture (20 mM Tris, 300 mM NaCl, 0.025% Tween 20, 0.10 mM phenylmethylsulfonyl fluoride, 10 mg of lysozyme, pH 7.5), incubated for 30 min on ice, and then sonicated for 3 × 3 min on ice. The lysed cells were centrifuged at 100,000 × g for 1 h, and the supernatant was loaded onto Talon resin (20 ml, Clontech). Protein was eluted with 500 mM imidazole (3 × 5 ml) plus ligand (3,3',5-triiodo-L-thyronine (Sigma)). Protein purity (>90%) was assessed by SDS-PAGE and high pressure size exclusion chromatography, and protein concentration was measured by the Bradford protein assay. The protein was dialyzed overnight against assay buffer (3 × 4 liters, 50 mM sodium phosphate, 150 mM NaCl, pH 7.2, 1 mM dithiothreitol, 1 mM EDTA, 0.01% Nonidet P-40, 10% glycerol). hTRα LBD (His<sub>6</sub>; residues Glu<sup>148</sup>-Val<sup>410</sup>) was expressed using the same procedure as hTRβ with the exception that 0.5 mM isopropyl-1-thio-β-D-galactopyranoside was added at  $A_{600} = 1.2$ . Unliganded protein was eluted with 100 mM imidazole.

Human PPAR $\gamma$  (hPPAR $\gamma$ ) was expressed and purified following the procedure above using the following modifications. Cultures were grown up and induced at 22 °C for the same amount of time as above. Induction was obtained with 500 µM of isopropyl- $\beta$ -D-thiogalactoside. Buffer 1 contained 20 mM Tris (pH 7.5), 100 mM NaCl, 0.5 mM PMSF, 0.5% Triton X-100, and 10 mg/L lysozyme. Buffer 2 contained 20 mM Tris (pH 7.5), 100 mM NaCl, 1 mM imidazole, and 5 mM dithiothreitol (DTT). Buffer 3 contained 20 mM Tris (pH 7.5), 100 mM NaCl, 5 mM DTT, and 1 mM imidazole and was used to wash the beads 7 times instead of 5. Buffer 4 was not necessary in the purification of hPPAR $\gamma$ . Buffer 5 contained 20 mM Tris (pH 7.5), 100 mM imidazole. Buffer 6 contained 50 mM Tris (pH 8.0), 25 mM KCl, 2 mM DTT, and 10% glycerol. PPAR $\gamma$  does not require any ligand to remain stable in buffer 6.

*Peptidesynthesis and labeling.* SRC2-2 peptide was synthesized and purified by reverse phase HPLC in the Hartwell Center (St. Jude Children's Research Hospital). Texas Red- or fluorescein- maleimide (Molecular Probes) fluoroprobes were conjugated to the N-terminal cysteine of SRC2-2 peptide.

*Compound transfer*. Compounds were transferred to assay plates by a pin tool equipped with 100 H pins (V&P Scientific).

*Fluorescence polarization assay:* For the TR $\beta$  and TexasRed-SRC2-2 assay, all liquid handling was performed on a Biomek FX (Beckman Coulter). Compounds were serially diluted from 10,000 to 5  $\mu$ M in DMSO into a 384-well plate (Costar). Using a pin tool, 260 nL compound was transferred to 20  $\mu$ L of assay buffer (20 mM Tris (pH 7.4), 100 mM NaCl, 1 mM EDTA, 1 mM DTT, 10% glycerol, 0.01% NP-40, 1  $\mu$ M T3, 0.6  $\mu$ M hTR-LBD, 20 nM of Texas Red labeled SRC2-2 peptide, 4% DMSO) in a black 384-well assay plate (Corning). After a 3 h equilibration, fluorescence polarization was measured using an EnVision (PerkinElmer) plate reader. Two independent experiments, in triplicate, were carried out for each compound. The  $\beta$ -aminoketone SJ-1 (DHPPA, [3-dibutylamino]-1-(4-hexylphenyl)propan-1-one), a known thyroid hormone receptor antagonist, was used as a positive control.

*Hormone displacement assay. Hormone displacement assay*-All liquid handling was carried out using an automated liquid handling system (Biomek FX, Beckman Coulter, Fullerton, CA). To each well of a 384-well Ni-chelate-coated FlashplateR (PerkinElmer) was added 50 μL of 5 μM hTRβ-LBD in assay buffer (50 mM HEPES, 100 mM NaCl, 1 mM DTT, 0.1% bovine serum albumin (BSA), 10% glycerol, and 0.01% Triton X-100 (pH 7.2)). After two hours incubation, the protein solution was discarded, followed eventually by washes with assay buffer. Then, 25 μL of serial diluted small molecules in assay buffer containing 10% DMSO was added into each well followed by addition of 25 μL of 2 nM [125-I]-T3 solution in assay buffer. The final assay solution contained 5% DMSO. The plates were sealed with clear tape (MilliporeR tape multiscreen) and allowed to equilibrate for 3 h at room temperature. Radiocounts were measured using a TopCount Microplate Scintillation and Luminescence Counter (Packard Instrument Company, Meriden, CT). All data were analyzed using GraphPad Prism 4.03 (GraphPad Software, San Diego, CA); IC50 values were obtained by fitting data to the following equation: (sigmoidal dose response (variable slope)): y = bottom + (top – bottom)/(1 + 10^((LogIC50 – x)\*Hillslope)), where x is the logarithm of concentration, and y is the response. Two independent experiments, in triplicates, were carried out for each compound.

*Transcription assay.* HEK 293 (ATCC) cells were cultured in DMEM containing 10% FBS and maintained in 5% CO<sub>2</sub> at 37 °C. T3 (30 nM) was used as a positive control in all assays. HEK 293 cells were plated at 8 x 10<sup>6</sup> cells/dish (approximately 40-60 % confluence) in 100 mm culture dishes in 10 mL of DMEM/F 12 (1:1 mixture, Hyclone Laboratories) containing 2.5 mM L-glutamine and 10% heat inactivated charcoal stripped serum (Hyclone Laboratories). After a 6 h incubation, 460 µL of transfection mixture containing 5µg CMV-TRβ plasmid, 15 µg DR4 (AGGTCAcaggAGGTCA)-TRE-firefly luciferase reporter plasmid, 1.25 µg TK-Renilla luciferase control reporter plasmid (Promega) and 64 µL Fugene6 (Roche) was added and the cells incubated overnight. Cells were trypsinized and added to 96-well plates (Corning) at 4 x 10<sup>4</sup> cells/well in 75 µL DMEM/F 12 medium. Six hours after plating, serially diluted compounds in 25 µL of DMEM/F12 medium were added to the cell culture medium. After incubation for18 h, Dual-Glo (Promega) detection reagent was added and luminescence was measured using an EnVision (PerkinElmer) plate reader. TRE-mediated luciferase activity was normalized by *Renilla* luciferase activity. The inhibition data was normalized to basal expression (treated with DMSO only) and fully induced expression (treated with T3 solution in DMSO). Two experiments, in triplicate, were carried out for each compound.

*Cytotoxicity assay.* HepG2 (ATCC) cells were grown to 80% confluence, collected and plated at 700 cells/well in 25  $\mu$ L media per well in 384-well plates (Costar 3712). Compounds were diluted and transferred to cells as described above and the plates incubated for 72 h at 37° C in 5% CO<sub>2</sub>. CellTiter-Glo (Promega) detection reagent was added following the manufacturer's instructions and luminescence was measured using an EnVision (PerkinElmer) plate reader.

*RNA extraction and real time.* HepG2 cells were split into 6 well plates at a density of 1 X  $10^6$  cells well<sup>-1</sup> in DMEM/F-12 media with 10% CSS. Twenty four hours later, the cells were treated with T3 or a combination of T3 with **compound**. 24 hours after treatment, cells were harvested for RNA using RNA Stat-60, following the manufacturer's instructions. The resulting RNA was treated with DNase I (Invitrogen, Cat. No. 18068-015) to remove contaminating genomic DNA. Then RNA was cleaned up using Qiagen RNeasy Mini (Qiagen), following the manufacturer's instructions. Equal quantities of RNA were then reserve transcribed using Superscript III (Invitrogen), following the manufacturer's instructions. The resulting cDNA was diluted 1:50 in nuclease free water and used in real time PCR reactions with the Quantifast master mix (Qiagen) in an ABI 7900 HT. The following primers were used: 18S primer mix from Qiagen (cat# QT00199367), PEPCK, forward: ACGGATTCACCCTACGTGGT, reverse: CCCCACAGAATGGAGGCATTT. MMP11 real time PCR assay was ordered from Qiagen (cat. No. QT00024031). The expression of target genes was normalized to the expression of the 18S subunit of the ribosome. The PCR quantization was carried out using  $\Delta\Delta$ Ct method and data was expressed as fold change over DMSO treated controls.

Solubility. The solubility assay was carried out on Biomek FX lab automation workstation (Beckman Coulter, Inc.). Ten  $\mu$ L of compound stock was added to 190  $\mu$ L 1-propanol to make a reference stock plate. Five  $\mu$ L from this reference stock plate was mixed with 70  $\mu$ L 1-propanol and 75  $\mu$ L phosphate buffered saline (PBS, pH 7.4) to make the reference plate and the UV spectrum (250 – 500 nm) of the reference plate was measured using a SPECTRAmax PLUS plate reader (Molecular Devices). Six  $\mu$ L of 10 mM test compound stock was added to 600  $\mu$ L PBS in a 96-well storage plate and mixed. The storage plate was sealed and incubated at room temperature for 18 h. The suspension was then filtered through a 96-well filter plate (pION Inc.). Seventy five  $\mu$ L of filtrate was mixed with 75  $\mu$ L 1-propanol to make the sample plate for UV spectroscopic analysis. A single experiment was performed in triplicate for each compound. Solubility was calculated using uSOL Evolution software based on the AUC (area under the curve) of the UV spectrum of the sample plate and the reference plate.

*Permeability assay.* The Parallel Artificial Membrane Permeability Assay (PAMPA) was carried out on a Biomek FX lab automation workstation (Beckman Coulter, Inc.). Three  $\mu$ L of test compound stock (10 mM in DMSO) was mixed with 600  $\mu$ L of SSB (system solution buffer, pH 7.4 or 4, pION Inc.) to dilute the test compound. One hundred fifty  $\mu$ L of diluted test compound in SSB was transferred to a UV plate (pION Inc.) and the UV spectrum was measured on a SPECTRAmax PLUS plate reader (Molecular Devices) to establish a reference plate. The membrane on a pre-loaded PAMPA sandwich (pION Inc.) was painted with 4  $\mu$ L GIT lipid (pION Inc.). The acceptor chamber was then filled with 200  $\mu$ L ASB (acceptor solution buffer, pION Inc.) and the donor chamber was filled with 180  $\mu$ L test compound diluted in SSB. The PAMPA sandwich (donor and acceptor chamber) was assembled, placed on the Gut-box (pION Inc.) and stirred for 30 minutes. The Aqueous Boundary Layer was set to 40  $\mu$ M for stirring and the UV spectrum (250-500 nm) of the donor and the acceptor chambers were read. A single experiment was performed in triplicate for each compound. The permeability coefficient was calculated using PAMPA Evolution 96 Command software (pION Inc.) based on the AUC of the reference, donor, and acceptor plates.

*Data Analysis.* Curves were fit to Titration-response data using GraphPad Prism 4.03 (GraphPad Software).  $IC_{50}$  values were obtained by fitting data to the following equation: (sigmoidal dose response (variable slope)): y = bottom + (top -bottom)/(1 + 10^((LogIC\_{50} - x)\*Hill slope)), where x is the logarithm of concentration and y is the response.

### NMR data

### Intermediates.

| <b>Q</b> (1)                     | N=> O-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>1</sup> U NMP (400 MHz CDC1) $\&$ 8.51 (d. $I = 2.1$ Hz 1H) 8.45 (c. 1H) 8.10 (dd. $I = -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0{1}                             | s is in the second seco | $\begin{array}{c} 11  NINK (400 \text{ NI112, CDC13) 0 6.51 (u, J = 2.1 \text{ H2, I11), 6.45 (s, 111), 6.10 (uu, J = 2.1 \text{ H2, I11), 6.45 (s, 111), 6.10 (uu, J = 2.1 \text{ H2, I11), 6.45 (s, 111), 6.10 (uu, J = 2.1 \text{ H2, I11), 6.45 (s, 111), 6.10 (uu, J = 2.1 \text{ H2, I11), 6.45 (s, 111), 6.10 (uu, J = 2.1 \text{ H2, I11), 6.10 ($                                                                                                                                                                                                                                                       |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.4, 2.1 HZ, 1H), $7.0/(0, J = 8.4$ HZ, 1H), $4.41(q, J = 7.1$ HZ, 2H), $1.41(t, J = 7.1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                  | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Hz$ , 3H); <sup>13</sup> C NMR (101 MHz, CDCl <sub>3</sub> ) $\delta$ 168.67, 160.86, 149.35, 132.83, 132.76,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130.82, 130.62, 129.30, 123.58, 62.08, 14.31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>8</b> {2}                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.48 (d, J = 2.1 Hz, 1H), 8.07 (dd, J = 8.4, 2.1 Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1H) 7 66 – 7 56 (m 1H) 4 38 (a $I = 7.1$ Hz 2H) 2 79 (s 3H) 1 40 (t $I = 7.1$ Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  | l j ° o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $^{11}$ , $^{13}$ C NMD (101 MH <sub>2</sub> CDC1) § 165 26 161 77 161 40 148 40 122 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 511, C NWK (101 WHZ, CDCl <sub>3</sub> ) 0 105.20, 101.77, 101.40, 140.40, 152.00,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 132.03, 130.53, 129.00, 123.54, 123.44, 01.05, 17.48, 14.55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>8</b> { <i>3</i> }            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.49 (d, $J = 2.1$ Hz, 1H), 8.08 (dd, $J = 8.4, 2.1$ Hz, 1H), 7.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d, J = 8.4  Hz, 1H), 3.91  (s, 3H), 3.21  (q,  J = 7.5  Hz, 2H), 1.35  (t,  J = 7.5  Hz, 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  | j s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(101 \text{ MHz}, \text{CDCl}_3) \delta 167.31, 165.62, 162.01, 148.40, 132.98, 132.59, 130.60, 128.96,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123.47, 122.44, 77.36, 77.05, 76.73, 52.43, 24.39, 13.58.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>8</b> { <i>4</i> }            | F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>1</sup> H NMR (400 MHz, DMSO) $\delta$ 8.69 (d, $J = 2.2$ Hz, 1H), 8.34 (dd, $J = 8.5, 2.2$ Hz, 1H), 7.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0(1)                             | N-{ 0-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -7.94 (m, 1H), 4.39 (a, $J = 7.1$ Hz, 2H), 1.33 (t, $J = 7.1$ Hz, 3H), <sup>13</sup> C NMR (101 MHz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  | s s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DMSO) $\delta$ 166 58 157 96 148 12 144 93 ( $\sigma^{-2}I_{CE}$ = 37 4 Hz) 132 82 131 55 131 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  | CI CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $131.04.128.10.123.50.119.60 (g^{-1}I_{cr} - 273.7 Hz) = 62.83.13.78$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 131.04, 120.10, 123.30, 117.00 (q, 7(t-273.7112), 02.03, 13.70.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>8</b> {5}                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.54 (d, <i>J</i> = 2.1 Hz, 1H), 8.14 (dd, <i>J</i> = 8.4, 2.1 Hz, 1H), 7.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  | N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -7.76 (m, 2H), 7.66 (d, $J = 8.4$ Hz, 1H), 7.52 $-7.42$ (m, 3H), 4.32 (q, $J = 7.1$ Hz, 2H), 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(t, J = 7.1 \text{ Hz}, 3\text{H})$ . <sup>13</sup> C NMR (101 MHz, CDCl <sub>3</sub> ) $\delta$ 165.29, 161.08, 161.04, 148.43, 133.48,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 132.77, 132.66, 130.65, 129.93, 129.60, 129.21, 127.92, 124.02, 123.53, 61.93, 14.13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>9</b> {1,1}                   | N- 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JYD82 <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.75 (d, J = 2.0 Hz, 1H), 8.21 (dd, J = 8.6, 2.0 Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ( )                              | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1H), 8.15 (s, 1H), 7.39 (d, $J = 8.6$ Hz, 1H), 4.40 (q, $J = 7.1$ Hz, 2H), 2.50 (s, 3H), 1.38 (t, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 7.1 Hz, 3H). <sup>13</sup> C NMR (101 MHz, DMSO) $\delta$ 169.38, 160.42, 149.21, 145.09, 141.92,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 151.12, 127.51, 120.11, 127.05, 125.27, 15.50, 11.11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0(13)                            | N= 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>1</sup> H NMR (400 MHz DMSO) $\delta$ 8 74 (d. $I = 2.0$ Hz 1H) 8 55 (s. 1H) 8 28 (dd. $I = 8.5, 2.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>9</b> {1,3}                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H THIR (400 MHZ, DMSO) $0.74$ (d, $J = 2.0$ HZ, HI), $0.55$ (s, HI), $0.20$ (dd, $J = 0.5$ , 2.1<br>Hz 1H) 7.80 (d, $J = 8.7$ Hz 1H) 7.51 7.46 (m 2H) 7.41 7.35 (m 2H) 7.35 7.28 (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112, 111), 7.67 (u, $J = 6.7$ 112, 111), 7.51 = 7.40 (iii, 211), 7.41 = 7.55 (iii, 211), 7.55 = 7.26 (iii, 14), 7.51 = 7.1 Hz (21), 1.22 (t, $I = 7.1$ Hz (21), 1.35 = 7.26 (iii, 14), 7.55 = 7.26 (iii, 14),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                  | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111, 4.47 (5, 211), 4.50 (q, $J = 7.1$ 112, 211), 1.55 (l, $J = 7.1$ 112, 511), C WIR (101 WI12, DMSO) § 160 25 160 41 140 20 145 24 140 20 125 17 121 20 120 42 120 28 128 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DWSO = 0.09.23, 100.41, 149.20, 143.24, 140.20, 155.17, 151.30, 129.45, 129.26, 126.00, 109.71, 109.47, 107.65, 102.07, 61.70, 26.00, 14.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0(2,1)                           | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{126.71}{120.47}, \frac{127.03}{125.27}, \frac{125.27}{01.72}, \frac{50.09}{14.10}, \frac{141.0}{0.19}, \frac{141.0}{14.10}, \frac{141.0}{0.19}, $ |
| 9{2,1}                           | N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H INMR (400 MHZ, CDCl <sub>3</sub> ) 0 8.80 (d, $J = 2.0$ HZ, 1H), 8.18 (dd, $J = 8.5, 2.0$ HZ, 1H), 7.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0, J = 0.0  HZ, 1H), 4.39 (0, J = 7.1  HZ, 2H), 2.02 (8, 5H), 2.39 (8, 5H), 1.42 (1, J = 7.1  HZ, 1.10  HZ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5H). C INMK (101 MHZ, CDCl <sub>3</sub> ) 0 100.45, 101.97, 101.55, 145.54, 142.27, 150.91, 129.48,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0(2.2)                           | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.22, 124.11, 122.01, 01.51, 17.55, 10.10, 14.50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9{2,2}                           | N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H NMIK (400 MHZ, CDCl <sub>3</sub> ) $\delta$ 8. /8 (d, $J = 2.0$ HZ, 1H), 8.11 (dd, $J = 8.5, 2.0$ HZ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                  | s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1H), 7.47 (d, $J = 8.5$ Hz, 1H), 4.37 (q, $J = 7.1$ Hz, 2H), 3.06 – 2.97 (m, 2H), 2.79 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                  | s s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3H), $1.85 - 1.69$ (m, 2H), $1.54$ (dt, $J = 14.5$ , $7.4$ Hz, 2H), $1.40$ (t, $J = 7.1$ Hz, 3H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                  | NU <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.99$ (t, $J = 7.3$ Hz, 3H). <sup>13</sup> C NMR (101 MHz, CDCl <sub>3</sub> ) $\delta$ 166.49, 161.97, 161.30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145.95, 141.50, 130.64, 129.40, 126.94, 124.09, 122.56, 61.50, 32.16, 29.78, 22.26,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.52, 14.36, 13.68.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9{23}                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>1</sup> H NMR (400 MHz, CDCl <sub>2</sub> ) $\delta$ 8 79 (d, $I = 2.0$ Hz, 1H) 8 10 (dd, $I = 7.5, 2.0$ Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <i>P</i> [2,5]                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11) 7 52 (d $I = 8.6 \text{ Hz}$ 11) 7 44 (d $I = 7.0 \text{ Hz}$ 21) 7 42 7 20 (m 21) 4 27 (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111, $7.53$ (u, $J = 0.0112$ , $111$ ), $7.44$ (u, $J = 7.0112$ , $211$ ), $7.42 = 7.50$ (III, $511$ ), $4.57$ (u, $J = 7.0112$ , $211$ ), $7.42 = 7.50$ (III, $511$ ), $4.57$ (u, $J = 7.0112$ , $211$ ), $7.42 = 7.50$ (III, $511$ ), $4.57$ (u, $J = 7.0112$ , $211$ ), $7.42 = 7.50$ (III, $511$ ), $7.50$ (III, $7.50$ (III), $7.50$ (III, $7.50$ (III), $7.50$ (III), $7.50$ (III, $7.50$ (III),                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J = 7.2 HZ, 2H), 4.20 (S, 2H), 2.78 (S, 5H), 1.40 (t, $J = 7.1$ HZ, 5H); C NMR (101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  | ~ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MHz, $CDC1_3$ ) $\delta$ 166.34, 161.94, 161.30, 145.74, 140.87, 134.46, 130.81, 129.84,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 129.07, 128.98, 128.01, 127.28, 124.02, 122.68, 61.51, 37.63, 17.51, 14.35.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>9</b> { <i>3</i> , <i>1</i> } | N-(,0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.84 (d, $J$ = 2.0 Hz, 1H), 8.17 (dd, $J$ = 8.5, 2.0 Hz, 1H), 7.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  | s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d, J = 8.6  Hz, 1H), 3.91  (s, 3H), 3.21  (q,  J = 7.5  Hz, 2H), 2.56  (s, 3H), 1.38 - 1.31  (m, 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>13</sup> C NMR (101 MHz, CDCl <sub>3</sub> ) δ 167.26, 166.79, 162.21, 145.55, 142.22, 131.02, 129.58,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                  | ŃO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126.21, 124.14, 121.50, 52.34, 24.42, 16.16, 13.62.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>9</b> {3,2}                   | N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.79 (d, $J$ = 2.0 Hz, 1H), 8.12 (dd, $J$ = 8.5, 2.0 Hz, 1H), 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d, J = 8.6 Hz, 1H), 3.91 (s, 3H), 3.21 (q, J = 7.5 Hz, 2H), 3.05 – 2.96 (m, 2H), 1.76 (dt, J =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.0, 7.4 Hz, 2H), 1.54 (dt, <i>J</i> = 14.6, 7.4 Hz, 2H), 1.35 (t, <i>J</i> = 7.5 Hz, 3H), 0.99 (t, <i>J</i> = 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hz, 3H). <sup>13</sup> C NMR (101 MHz, CDCl <sub>3</sub> ) δ 167.24, 166.84, 162.21, 145.98, 141.43, 130.75,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 129.52, 126.93, 124.12, 121.46, 32.17, 30.96, 29.80, 24.42, 22.26, 13.68, 13.61.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| <b>9</b> { <i>3</i> , <i>3</i> }  | N-( 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.80 (d, $J$ = 2.0 Hz, 1H), 8.09 (dd, $J$ = 8.5, 2.0 Hz, 1H), 7.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                   | s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d, J = 8.6  Hz, 1H), 7.46 - 7.42  (m, 2H), 7.39 - 7.28  (m, 3H), 4.26  (s, 2H), 3.91  (s, 3H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                   | S NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.20 (q, J = 7.5 Hz, 2H), 1.35 (t, J = 7.5 Hz, 3H).$ <sup>13</sup> C NMR (101 MHz, CDCl <sub>3</sub> ) $\delta$ 167.23,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.09, 102.18, 145.75, 140.82, 154.47, 150.90, 129.94, 129.05, 128.97, 128.00, 127.20, 124.05, 121.57, 37.62, 30.96, 24.41, 13.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <b>Q</b> {A 1}                    | F, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $^{1}$ H NMR (400 MHz DMSO) $\delta$ 8 77 (d $I = 2.1$ Hz 1H) 8 33 (dd $I = 8.6, 2.1$ Hz 1H) 7 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| <b>γ</b> { <b>τ</b> ,1}           | N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d, J = 8.7  Hz, 1H), 4.39 (q, J = 7.1  Hz, 2H), 2.63 (s, 3H), 1.34 (t, J = 7.1  Hz, 4H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                   | s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                   | S NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| <b>9</b> {5,1}                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>1</sup> H NMR (400 MHz, DMSO) $\delta$ 8.79 (s, 1H), 8.33 (d, <i>J</i> = 8.2 Hz, 1H), 7.81 (d, <i>J</i> = 3.6 Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2H), 7.74 (d, <i>J</i> = 8.6 Hz, 1H), 7.50 (s, 3H), 4.26 (q, <i>J</i> = 6.9 Hz, 2H), 2.62 (s, 3H), 1.24 (t, <i>J</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                   | s of the second | = 7.0 Hz, 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                   | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| <b>10</b> { <i>1</i> ]}           | N_ 0-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.51 (s, 1H), 8.48 (t, J = 3.6 Hz, 1H), 8.34 – 8.26 (m, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| _ ( [ ] , ] )                     | o s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.43 (q, <i>J</i> = 7.1 Hz, 2H), 3.47 (s, 3H), 1.42 (dd, <i>J</i> = 9.0, 5.2 Hz, 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>13</sup> C NMR (101 MHz, CDCl <sub>3</sub> ) δ 167.33, 160.59, 149.73, 149.61, 139.11, 135.25, 132.47,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                   | 0 NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 132.13, 130.04, 122.83, 62.30, 45.17, 14.29.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 10(1.2)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{1}{14} \text{ MMD } (400 \text{ MHz CDC}) \otimes 9.40 (2.111) \otimes 42.(4.1 - 1.711 - 111) \otimes 0.0(44.1 - 0.2.10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 10{1,3}                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>I</b> INVIK (400 IVITZ, $CDC1_3$ ) 0 8.49 (S, 1H), 8.45 (G, $J = 1.7$ HZ, 1H), 8.00 (Gd, $J = 8.2, 1.8$<br>Hz 1H) 7.66 - 7.60 (m 1H) 7.38 - 7.28 (m 5H) 4.84 (s 2H) 4.42 (g $I - 7.1$ Hz 2H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.41 (t, $J = 7.1$ Hz, 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                   | ", Ö ŃO₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>13</sup> C NMR (101 MHz, CDCl <sub>3</sub> ) δ 167.42, 160.59, 149.98, 149.54, 138.80, 133.90, 132.96,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 132.06, 131.05, 129.34, 129.08, 128.96, 127.19, 122.47, 62.85, 62.28, 14.28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| <b>10</b> { <i>2</i> , <i>1</i> } | N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.39 (s, 1H), 8.24 – 8.18 (m, 2H), 4.32 (q, <i>J</i> = 7.1 Hz, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                   | o s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $^{3.40}$ (s, 3H), 2.74 (s, 3H), 1.34 (t, $J = 7.1$ Hz, 3H).<br>$^{13}$ C NMP (101 MHz, CDCL) & 163 01, 161 77, 161 53, 140 71, 120 21, 124 00, 122 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                   | S NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C NMR (101 MHZ, CDCl <sub>3</sub> ) 0 105.91, 101.77, 101.55, 149.71, 159.21, 154.99, 152.57, 129.87, 124.90, 122.70, 61.87, 45.18, 17.50, 14.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 10{2.2}                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.43 (d. J = 1.6 Hz, 1H), 8.26 (dd. J = 8.2, 1.6 Hz, 1H), 8.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 10(2,2)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d, J = 8.2 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 3.62 – 3.53 (m, 2H), 2.81 (s, 3H), 1.81 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2H), $1.55 - 1.44$ (m, 2H), $1.41$ (t, $J = 7.1$ Hz, 3H), $0.96$ (t, $J = 7.3$ Hz, 3H). <sup>13</sup> C NMR (101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                   | Ö NO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MHz, CDCl <sub>3</sub> ) δ 164.02, 161.73, 161.54, 149.94, 139.05, 133.88, 133.14, 129.57, 124.84,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 10(2.2)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122.67, 61.85, 56.56, 24.58, 21.59, 17.49, 14.32, 13.53.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 10{2,3}                           | N O-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H NMR (400 MHZ, CDCl <sub>3</sub> ) 0 8.40 (d, $J = 1.7$ HZ, 1H), 7.97 (dd, $J = 8.2, 1.7$ HZ, 1H), 7.05<br>- 7.57 (m, 1H), 7.35 - 7.27 (m, 5H), 4.83 (s, 2H), 4.38 (d, $J = 7.1$ HZ, 2H), 2.79 (s, 3H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                   | o s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.40  (H, 111), 1.53  (HI, 511), 1.65  (s, 211), 1.65  (q, 5  (HI, 111), 2.17), (s, 511), 1.40  (t, J = 7.1  Hz, 3 H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 138.89, 133.80, 132.65, 131.04, 129.31, 128.94, 127.23, 124.84, 122.32, 62.85, 61.84,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.46, 14.31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| <b>10</b> { <i>3</i> , <i>1</i> } | N 0-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.49 (d, $J$ = 2.1 Hz, 1H), 8.08 (dd, $J$ = 8.4, 2.1 Hz, 1H), 7.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                   | o s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d, J = 8.4  Hz, 1H), 3.91 (s, 3H), 3.21 (q, J = 7.5  Hz, 2H), 1.35 (t, J = 7.5  Hz, 3H). C NMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                   | S V<br>O NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123 80 122 75 52 61 45 18 24 40 13 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 10{3.2}                           | N- 0-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.44 (d, J = 1.6 Hz, 1H), 8.27 (dd, J = 8.2, 1.7 Hz, 1H), 8.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d, J = 8.2 Hz, 1H), 3.93 (s, 3H), 3.63 – 3.53 (m, 2H), 3.23 (q, J = 7.5 Hz, 2H), 1.81 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2H), $1.55 - 1.43$ (m, 2H), $1.36$ (t, $J = 7.5$ Hz, 3H), $0.96$ (t, $J = 7.3$ Hz, 3H). <sup>13</sup> C NMR (101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                   | O NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MHZ, UDU13) 0 167.00, 164.41, 161.79, 149.93, 139.14, 133.83, 133.13, 129.64, 123.74, 122.71, 56.56, 52.59, 24.62, 24.40, 21.58, 13.55, 13.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 10[3 3]                           | Γ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $^{1}$ H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.49 (d. $J = 2.1$ Hz, 1H), 8.08 (dd $J = 8.4, 2.1$ Hz, 1H), 7.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| <b>1U</b> [ <i>J</i> , <i>J</i> ] | N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d, J = 8.4  Hz, 1H), 3.91 (s, 3H), 3.21 (q, J = 7.5  Hz, 2H), 1.35 (t, J = 7.5  Hz, 3H). <sup>13</sup> C NMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (101 MHz, CDCl <sub>3</sub> ) δ 167.54, 164.39, 161.76, 149.95, 138.97, 133.80, 132.65, 131.04,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 129.31, 128.99, 128.94, 127.24, 123.74, 122.37, 62.84, 52.58, 24.38, 13.55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| <b>10</b> { <i>4</i> , <i>1</i> } | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $^{+}$ H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ <sup>+</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.50 – 8.44 (m, 1H), 8.33 (d, J = 1.0 Hz, 2H) 4.40 – 4.42 (m, 2H) 2.48 (z, 2H) 1.42 (z, J, Z, Z, H, |  |  |
|                                   | N S O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= 1.0 \text{ nz}, 2\text{ n}, 4.49 - 4.42 \text{ (m, 2n)}, 5.48 \text{ (s, 5h)}, 1.45 \text{ (t, } J = /.1 \text{ Hz}, 5\text{ h}). UNMK (101)$ $MH_7 \text{ CDCL} \delta 164.81 \text{ 158, 28} 149.80 \text{ 147, 55 (a}^{-2}L_{\text{m}} - 39.4 \text{ Hz}) 137.85 \text{ 136, 03, 122, 65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                   | S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $130.22, 122.90, 119.45$ (q. $^{1}J_{CE} = 274.7$ Hz), 63.33, 45.17, 13.99.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                   | O NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <b>10</b> { <i>5</i> , <i>1</i> } | $\langle \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.52 (d, <i>J</i> = 1.6 Hz, 1H), 8.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                   | <u>м</u> , , о-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (dd, J = 8.2, 1.7 Hz, 1H), 8.32 - 8.27 (m, 1H), 7.85 - 7.77 (m, 2H), 7.52 - 7.46 (m, 3H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                   | o store                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.34 (q, $J = 7.1$ Hz, 2H), 3.47 (s, 3H), 1.33 (t, $J = 7.1$ Hz, 3H). <sup>13</sup> C NMR (101 MHz, CDCl <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 104.00, 101.41, 100.82, 149.75, 139.07, 135.19, 135.19, 132.40, 130.02, 129.95, 129.79, 128.00, 125.32, 122.79, 62.16, 45.18, 14.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.00, 125.52, 122.77, 02.10, 75.10, 17.12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| <b>11</b> {1.7}                   | N OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>1</sup> H NMR (400 MHz, DMSO) $\delta$ 8.67 (d, J = 1.8 Hz, 1H), 8.58 (s, 1H), 8.55 (dd, J = 8.3, 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (-/ <b>-</b> )                    | o s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hz, 1H), 8.28 – 8.25 (m, 1H), 3.54 (s, 3H); <sup>13</sup> C NMR (101 MHz, DMSO) δ 167.26, 161.67,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                   | S<br>U<br>NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 149.08, 148.86, 138.18, 133.88, 133.17, 132.34, 130.46, 122.44, 44.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| S6                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

| <b>11</b> {1.3}                                                                           | N OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>1</sup> H NMR (400 MHz, DMSO) $\delta$ 8.69 (d, $J = 1.8$ Hz, 1H), 8.57 (s, 1H), 8.40 (dd, $J = 8.3, 1.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (-,-)                                                                                     | s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hz, 1H), 7.82 – 7.77 (m, 1H), 7.42 – 7.33 (m, 3H), 7.30 (m, 2H), 4.99 (s, 2H). <sup>13</sup> C NMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (101 MHz, DMSO) δ 167.15, 161.66, 149.24, 149.08, 138.33, 133.21, 131.73, 131.19,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 129.82, 129.00, 128.67, 127.23, 122.52, 61.68.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11{2 2}                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>1</sup> H NMR (400 MHz, DMSO) $\delta$ 8.63 (d, J = 1.8 Hz, 1H), 8.50 (dd, J = 8.3, 1.8 Hz, 1H), 8.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11(2,2)                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d, J = 8.3, 1H), 3.62 (dd, J = 14.8, 7.0 Hz, 3H), 2.72 (s, 3H), 1.73 - 1.61 (m, 2H), 1.48 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                           | ° ° °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.34 \text{ (m } 2\text{H}) 0.89 \text{ (t } I = 7.3 \text{ Hz} 3\text{H})^{-13} \text{C NMR} (101 \text{ MHz} \text{ DMSO}) \delta 163.78 162.51$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           | S T<br>O NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.54 (iii, 211), $0.09$ (i, $9 = 7.5$ Hz, 511). C TANK (101 MHz, DM50) 0 105.70, 102.51, 150 03 140 14 138 20 132 03 132 27 130 14 125 85 122 38 55 35 23 06 20 77 16 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 137.75, 147.14, 150.20, 152.75, 152.27, 150.14, 125.05, 122.50, 55.55, 25.70, 20.77, 10.77,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11(2.2)                                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{1}{14} \text{ NMP } (400 \text{ MH}_{7} \text{ DMSO}) \& 8.64 (d, I - 1.8 \text{ H}_{7} \text{ 1H}) \& 8.25 (dd, I - 8.2 + 1.8 \text{ H}_{7} \text{ 1H}) & 7.77$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11{2,3}                                                                                   | N OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} \text{II NWR} (400 \text{ WHZ}, \text{DWSO}) & 0.04 (\text{u}, \text{J} = 1.0 \text{ HZ}, \text{HI}), 0.55 (\text{u}, \text{J} = 0.5, 1.0 \text{ HZ}, \text{HI}), 7.77 \\ \text{(d} \text{J} = 8.3 \text{ Hz}, \text{H}) & 7.41 & 7.33 (\text{m}, 3\text{H}), 7.33 & 7.27 (\text{m}, 2\text{H}), 4.08 (\text{s}, 2\text{H}), 2.71 (\text{s}, 3\text{H}), \frac{13}{12} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0, 5 = 0.5  Hz, 111), 7.41 = 7.55 (m, 511), 7.55 = 7.27 (m, 211), 4.50 (s, 211), 2.71 (s, 511).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121 18 120 63 128 00 128 66 127 24 125 80 122 34 61 68 16 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11(27)                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 131.10, 129.03, 120.99, 120.00, 127.24, 123.09, 122.34, 01.00, 10.90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $11{3,1}$                                                                                 | N ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \Pi \text{ NWK} (400 \text{ MHZ}, \text{DWSO}) \ 0 \ 0.09 \ (\text{u}, J = 1.0 \text{ HZ}, 1\text{H}), \ 0.50 \ (\text{uu}, J = 0.5, 1.0 \text{ HZ}, 1\text{H}), \ 0.51 \\ (\text{d}, L = 9.2 \text{ Hz}, 1\text{H}), \ 2.60 \ (\text{a}, 2\text{H}), \ 2.22 \ (\text{a}, L = 7.5 \text{ Hz}, 2\text{H}), \ 1.25 \ (\text{t}, L = 7.5 \text{ Hz}, 2\text{H}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                           | o s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (u, J = 0.5  HZ, 1H), 5.00 (s, 5H), 5.22 (u, J = 7.5  HZ, 5H), 1.55 (l, J = 7.5  HZ, 5H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                           | S=C NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C  INVIR (101  MIR2, DIVISO) 0 105.55, 104.07, 102.55, 146.00, 156.10, 155.70, 152.51, 120.21, 125.27, 122.25, 44.45, 22.51, 12.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130.51, 125.57, 122.25, 44.45, 25.51, 15.55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11{3,2}                                                                                   | №ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H NMK (400 MHz, DMSO) $\delta$ 8.64 (d, $J = 1.7$ Hz, 1H), 8.50 (dd, $J = 8.3$ , 1.8 Hz, 1H), 8.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                           | o s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d, J = 8.3  Hz, 1H), 3.66 - 3.58  (m, 3H), 3.15  (q, J = 7.5  Hz, 3H), 1.72 - 1.62  (m, 2H), 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.54 (m, 2H), 1.28 (t, $J = 7.5$ Hz, 3H), 0.88 (t, $J = 7.3$ Hz, 3H). <sup>5</sup> C NMR (101 MHz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           | O NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DMSO) 8 165.33, 164.06, 162.35, 149.14, 138.30, 132.93, 132.21, 130.16, 125.39, 122.38,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55.37, 23.99, 23.51, 20.77, 13.55, 13.32.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>11</b> { <i>3</i> , <i>3</i> }                                                         | № _ ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>4</sup> H NMR (400 MHz, DMSO) $\delta$ 8.65 (d, $J = 1.8$ Hz, 1H), 8.36 (dd, $J = 8.3$ , 1.8 Hz, 1H), 7.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                           | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -7.72 (m, 1H), $7.41 - 7.31$ (m, 3H), $7.31 - 7.26$ (m, 2H), $4.98$ (s, 2H), $3.18 - 3.09$ (m, 3H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           | S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.28 (m, 3H). <sup>13</sup> C NMR (101 MHz, DMSO) δ 165.34, 163.96, 162.34, 149.23, 138.32,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                           | O NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 133.19, 131.57, 131.17, 129.65, 128.99, 128.66, 127.27, 125.43, 122.33, 61.69, 23.50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>11</b> { <i>4</i> , <i>1</i> }                                                         | F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>1</sup> H NMR (400 MHz, DMSO) $\delta$ 8.69 (d, $J = 1.8$ Hz, 1H), 8.57 (dd, $J = 8.3$ , 1.8 Hz, 1H), 8.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                           | М ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d, J = 8.3 Hz, 1H), 3.55 (s, 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                           | o s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11{57}                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>1</sup> H NMR (400 MHz, DMSO) $\delta$ 8.70 (d, $J = 1.8$ Hz, 1H), 8.57 (dd, $J = 8.3, 1.8$ Hz, 1H), 8.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>II</b> [3,1]                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                           | Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1 - 8.24$ (m, 1H), $7.86 - 7.80$ (m, 2H), $7.53 - 7.45$ (m, 3H), $3.54$ (s, 2H), $^{13}$ C NMR (101 MHz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                           | л ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-8.24$ (m, 1H), 7.86 $-7.80$ (m, 2H), 7.53 $-7.45$ (m, 3H), 3.54 (s, 2H). <sup>13</sup> C NMR (101 MHz, DMSO) $\delta$ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                           | OH<br>S OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 8.24 (m, 1H), 7.86 - 7.80 (m, 2H), 7.53 - 7.45 (m, 3H), 3.54 (s, 2H). <sup>13</sup> C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                           | OF SOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 8.24 (m, 1H), 7.86 - 7.80 (m, 2H), 7.53 - 7.45 (m, 3H), 3.54 (s, 2H). <sup>13</sup> C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>13</b> {6}                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>- 8.24 (m, 1H), 7.86 - 7.80 (m, 2H), 7.53 - 7.45 (m, 3H), 3.54 (s, 2H). <sup>13</sup>C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45.</li> <li><sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.50 (d, J = 1.7 Hz, 1H), 8.25 (s, 1H), 8.16 (dd, J = 8.4, 1.5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13{6}                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{l} -8.24 \ (m, 1H), 7.86 - 7.80 \ (m, 2H), 7.53 - 7.45 \ (m, 3H), 3.54 \ (s, 2H). \ ^{13}C \ NMR \ (101 \ MHz, DMSO) \ \delta \ 163.80, \ 161.77, \ 159.24, \ 148.87, \ 138.09, \ 133.87, \ 133.33, \ 132.31, \ 130.48, \ 129.90, \ 129.26, \ 127.78, \ 126.69, \ 122.41, \ 44.45. \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13{6}                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{bmatrix} -8.24 \text{ (m, 1H)}, 7.86 - 7.80 \text{ (m, 2H)}, 7.53 - 7.45 \text{ (m, 3H)}, 3.54 \text{ (s, 2H)}. ^{13}\text{C NMR (101 MHz, DMSO)} \\ \delta 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. \end{bmatrix}$ $\begin{bmatrix} ^{1}\text{H NMR (400 MHz, CDCl_3)} \\ \delta 8.50 \text{ (d, } J = 1.7 \text{ Hz}, 1\text{H}), 8.25 \text{ (s, 1H)}, 8.16 \text{ (dd, } J = 8.4, 1.5 \text{ Hz}, 1\text{H}), 7.66 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 4.47 \text{ (q, } J = 7.1 \text{ Hz}, 2\text{H}), 2.24 - 2.11 \text{ (m, 2H)}, 1.44 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}). \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13{6}                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{bmatrix} -8.24 \text{ (m, 1H)}, 7.86 - 7.80 \text{ (m, 2H)}, 7.53 - 7.45 \text{ (m, 3H)}, 3.54 \text{ (s, 2H)}. ^{13}\text{C NMR (101 MHz, DMSO)} \\ \text{DMSO)} \delta 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. \end{bmatrix}$ $\begin{bmatrix} ^{1}\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 8.50 \text{ (d, } J = 1.7 \text{ Hz}, 1\text{H}), 8.25 \text{ (s, 1H)}, 8.16 \text{ (dd, } J = 8.4, 1.5 \text{ Hz}, 1\text{H}), 7.66 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 4.47 \text{ (q, } J = 7.1 \text{ Hz}, 2\text{H}), 2.24 - 2.11 \text{ (m, 2H)}, 1.44 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}). \end{bmatrix} \\ \begin{bmatrix} ^{1}\text{C NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13{6}                                                                                     | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{l} -8.24 \ (m, 1H), 7.86 - 7.80 \ (m, 2H), 7.53 - 7.45 \ (m, 3H), 3.54 \ (s, 2H). \ ^{13}\text{C NMR} \ (101 \ \text{MHz}, \\ \text{DMSO}) \ \delta \ 163.80, \ 161.77, \ 159.24, \ 148.87, \ 138.09, \ 133.87, \ 133.33, \ 132.31, \ 130.48, \ 129.90, \\ 129.26, \ 127.78, \ 126.69, \ 122.41, \ 44.45. \end{array}  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>13</b> {6}<br><b>14</b> {6,1}                                                          | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{l} -8.24 \ (m, 1H), 7.86 - 7.80 \ (m, 2H), 7.53 - 7.45 \ (m, 3H), 3.54 \ (s, 2H). \ ^{13}C \ NMR \ (101 \ MHz, DMSO) \ \delta \ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. \end{array} \\  \begin{array}{l} ^{1}H \ NMR \ (400 \ MHz, \ CDCl_3) \ \delta \ 8.50 \ (d, J = 1.7 \ Hz, 1H), 8.25 \ (s, 1H), 8.16 \ (dd, J = 8.4, 1.5 \ Hz, 1H), 7.66 \ (d, J = 8.4 \ Hz, 1H), 4.47 \ (q, J = 7.1 \ Hz, 2H), 2.24 - 2.11 \ (m, 2H), 1.44 \ (t, J = 7.1 \ Hz, 3H). \ ^{13}C \ NMR \ (101 \ MHz, \ CDCl_3) \ \delta \ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>13</b> {6}<br><b>14</b> {6,1}                                                          | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{l} -8.24 \ (m, 1H), 7.86 - 7.80 \ (m, 2H), 7.53 - 7.45 \ (m, 3H), 3.54 \ (s, 2H). \ ^{13}C \ NMR \ (101 \ MHz, DMSO) \ \delta \ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. \end{array} \\ \begin{array}{l} ^{1}H \ NMR \ (400 \ MHz, \ CDCl_3) \ \delta \ 8.50 \ (d, \ J = 1.7 \ Hz, 1H), \ 8.25 \ (s, 1H), \ 8.16 \ (dd, \ J = 8.4, 1.5 \ Hz, 1H), 7.66 \ (d, \ J = 8.4 \ Hz, 1H), \ 4.47 \ (q, \ J = 7.1 \ Hz, 2H), \ 2.24 - 2.11 \ (m, 2H), \ 1.44 \ (t, \ J = 7.1 \ Hz, 3H). \ ^{13}C \ NMR \ (101 \ MHz, \ CDCl_3) \ \delta \ 164.64, \ 160.99, \ 148.79, \ 148.36, \ 132.64, \ 132.61, \ 130.77, \ 128.91, \ 128.19, \ 123.60, \ 61.86, \ 14.37. \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>13</b> {6}<br><b>14</b> {6,1}                                                          | $\begin{array}{c} N \\ O \\ S \\ O \\ O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{l} -8.24 \ (m, 1H), 7.86 - 7.80 \ (m, 2H), 7.53 - 7.45 \ (m, 3H), 3.54 \ (s, 2H). \ ^{13}C \ NMR \ (101 \ MHz, DMSO) \ \delta \ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. \end{array} \\ \begin{array}{l} ^{1}H \ NMR \ (400 \ MHz, \ CDCl_3) \ \delta \ 8.50 \ (d, J = 1.7 \ Hz, 1H), 8.25 \ (s, 1H), 8.16 \ (dd, J = 8.4, 1.5 \ Hz, 1H), 7.66 \ (d, J = 8.4 \ Hz, 1H), 4.47 \ (q, J = 7.1 \ Hz, 2H), 2.24 - 2.11 \ (m, 2H), 1.44 \ (t, J = 7.1 \ Hz, 3H). \ ^{13}C \ NMR \ (101 \ MHz, \ CDCl_3) \ \delta \ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. \end{array} \\ \begin{array}{l} ^{1}H \ NMR \ (400 \ MHz, \ CDCl_3) \ \delta \ 8.82 \ (d, J = 2.0 \ Hz, 1H), 8.27 \ (dt, J = 6.4, 3.2 \ Hz, 1H), 8.21 \ (s, 1H), 7.46 \ (d, J = 8.6 \ Hz, 1H), 4.47 \ (q, J = 7.1 \ Hz, 2H), 2.57 \ (s, 3H), 1.45 \ (t, J = 7.1 \ Hz, 3H). \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>13</b> {6}<br><b>14</b> {6,1}                                                          | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{l} -8.24 \ (m, 1H), 7.86 - 7.80 \ (m, 2H), 7.53 - 7.45 \ (m, 3H), 3.54 \ (s, 2H). \ ^{13}C \ NMR \ (101 \ MHz, DMSO) \ \delta \ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. \end{array} \\  \begin{array}{l} ^{1}H \ NMR \ (400 \ MHz, \ CDCl_3) \ \delta \ 8.50 \ (d, \ J = 1.7 \ Hz, 1H), 8.25 \ (s, 1H), 8.16 \ (dd, \ J = 8.4, 1.5 \ Hz, 1H), 7.66 \ (d, \ J = 8.4 \ Hz, 1H), 4.47 \ (q, \ J = 7.1 \ Hz, 2H), 2.24 - 2.11 \ (m, 2H), 1.44 \ (t, \ J = 7.1 \ Hz, 3H). \ ^{13}C \ NMR \ (101 \ MHz, \ CDCl_3) \ \delta \ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>13</b> {6}<br><b>14</b> {6,1}                                                          | $\begin{array}{c} N \\ O \\ S \\ O \\ O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ = 8.24 \text{ (m, 1H)}, 7.86 - 7.80 \text{ (m, 2H)}, 7.53 - 7.45 \text{ (m, 3H)}, 3.54 \text{ (s, 2H)}. ^{13}\text{C NMR (101 MHz, DMSO)} \\ \delta 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. \\ = 7.1 \text{ H NMR (400 MHz, CDCl_3)} \\ \delta 8.50 \text{ (d, } J = 1.7 \text{ Hz}, 1\text{ H}), 8.25 \text{ (s, 1H)}, 8.16 \text{ (dd, } J = 8.4, 1.5 \text{ Hz}, 1\text{ H}), 7.66 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{ H}), 4.47 \text{ (q, } J = 7.1 \text{ Hz}, 2\text{ H}), 2.24 - 2.11 \text{ (m, 2H)}, 1.44 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{ H}). ^{13}\text{C NMR (101 MHz, CDCl_3)} \\ \delta 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. \\ = 7.1 \text{ H NMR (400 MHz, CDCl_3)} \\ \delta 8.82 \text{ (d, } J = 2.0 \text{ Hz}, 1\text{ H}), 8.27 \text{ (dt, } J = 6.4, 3.2 \text{ Hz}, 1\text{ H}), 8.21 \text{ (s, 1H)}, 7.46 \text{ (d, } J = 8.6 \text{ Hz}, 1\text{ H}), 4.47 \text{ (q, } J = 7.1 \text{ Hz}, 2\text{ H}), 2.57 \text{ (s, 3H)}, 1.45 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{ H}). \\ = 1^3 \text{C NMR (101 MHz, CDCl_3)} \\ \delta 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38. \\ = 7.1 \text{ Hz}, 341.25 \text{ Hz}, 144.25 \text{ Hz}, 144.38. \\ = 7.1 \text{ Hz}, 144.38. \\ = 7$                                                                                                          |
| <b>13</b> {6}<br><b>14</b> {6,1}                                                          | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ = 8.24 \text{ (m, 1H)}, 7.86 - 7.80 \text{ (m, 2H)}, 7.53 - 7.45 \text{ (m, 3H)}, 3.54 \text{ (s, 2H)}. ^{13}\text{C NMR (101 MHz, DMSO)} \\ \delta 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. \\ = 1 \text{H NMR (400 MHz, CDCl_3)} \\ \delta 8.50 \text{ (d, } J = 1.7 \text{ Hz}, 1\text{H}), 8.25 \text{ (s, 1H)}, 8.16 \text{ (dd, } J = 8.4, 1.5 \text{ Hz}, 1\text{H}), 7.66 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 4.47 \text{ (q, } J = 7.1 \text{ Hz}, 2\text{H}), 2.24 - 2.11 \text{ (m, 2H)}, 1.44 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}). \\ = 7.1 \text{ Hz}, 3\text{H}). \\ = 13 \text{C NMR (101 MHz, CDCl_3)} \\ \delta 8.82 \text{ (d, } J = 2.0 \text{ Hz}, 1\text{H}), 8.27 \text{ (dt, } J = 6.4, 3.2 \text{ Hz}, 1\text{H}), 8.21 \text{ (s, 1H)}, 7.46 \text{ (d, } J = 8.6 \text{ Hz}, 1\text{H}), 4.47 \text{ (q, } J = 7.1 \text{ Hz}, 2\text{H}), 2.57 \text{ (s, 3H)}, 1.45 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}). \\ = 13 \text{C NMR (101 MHz, CDCl_3)} \\ \delta 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38. \\ = 12  Comparison of the com$                                                                                                                                                                                                                                                                                                                        |
| <b>13</b> {6}<br><b>14</b> {6,1}<br><b>14</b> {6,2}                                       | $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $ | $ = 8.24 \text{ (m, 1H)}, 7.86 - 7.80 \text{ (m, 2H)}, 7.53 - 7.45 \text{ (m, 3H)}, 3.54 \text{ (s, 2H)}. 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. $ $ = 14 \text{ NMR (400 MHz, CDCl}_3) δ 8.50 \text{ (d, } J = 1.7 \text{ Hz}, 1\text{ H}), 8.25 \text{ (s, 1H)}, 8.16 \text{ (dd, } J = 8.4, 1.5 \text{ Hz}, 1\text{ H}), 7.66 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{ H}), 4.47 \text{ (q, } J = 7.1 \text{ Hz}, 2\text{ H}), 2.24 - 2.11 \text{ (m, 2H)}, 1.44 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{ H}). ^{13}C NMR (101 \text{ MHz, CDCl}_3) δ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. $ $ = 14 \text{ NMR (400 MHz, CDCl}_3) δ 8.82 \text{ (d, } J = 2.0 \text{ Hz}, 1\text{ H}), 8.27 \text{ (dt, } J = 6.4, 3.2 \text{ Hz}, 1\text{ H}), 8.21 \text{ (s, 1H)}, 7.46 \text{ (d, } J = 8.6 \text{ Hz}, 1\text{ H}), 4.47 \text{ (q, } J = 7.1 \text{ Hz}, 2\text{ H}), 2.57 \text{ (s, 3H)}, 1.45 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{ H}). $ $ = 13 \text{ C NMR (101 MHz, CDCl}_3) δ 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38. $ $ = 14 \text{ NMR (400 MHz, CDCl}_3) δ 8.77 \text{ (d, } J = 2.0 \text{ Hz}, 1\text{ H}), 8.25 - 8.21 \text{ (m, 1H)}, 8.21 \text{ (s, 1H)}. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>13</b> {6}<br><b>14</b> {6,1}<br><b>14</b> {6,2}                                       | $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $                                                                                     | = 8.24 (m, 1H), 7.86 - 7.80 (m, 2H), 7.53 - 7.45 (m, 3H), 3.54 (s, 2H). 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. $ = 14 NMR (400 MHz, CDCl3) δ 8.50 (d, J = 1.7 Hz, 1H), 8.25 (s, 1H), 8.16 (dd, J = 8.4, 1.5 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.24 - 2.11 (m, 2H), 1.44 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. $ $ = 14 NMR (400 MHz, CDCl3) δ 8.82 (d, J = 2.0 Hz, 1H), 8.27 (dt, J = 6.4, 3.2 Hz, 1H), 8.21 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). $ $ = 13 C NMR (101 MHz, CDCl3) δ 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38. $ $ = 14 NMR (400 MHz, CDCl3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.25 - 8.21 (m, 1H), 8.21 (s, 1H), 7.51 - 7.46 (m, 1H), 4.46 (q, J = 7.1 Hz, 2H), 3.06 - 2.98 (m, 2H), 1.76 (dt, J = 14.9, 7.3 Hz) = 14.9, 7.3 Hz = 14.9, 7.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>13</b> {6}<br><b>14</b> {6,1}<br><b>14</b> {6,2}                                       | $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $                                                                                     | $ = 8.24 \text{ (m, 1H)}, 7.86 - 7.80 \text{ (m, 2H)}, 7.53 - 7.45 \text{ (m, 3H)}, 3.54 \text{ (s, 2H)}. ^{13}\text{C NMR (101 MHz, DMSO)} \\ \delta 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. \\ = 14 \text{NMR (400 MHz, CDCl_3)} \\ \delta 8.50 \text{ (d, } J = 1.7 \text{ Hz}, 1\text{H}), 8.25 \text{ (s, 1H)}, 8.16 \text{ (dd, } J = 8.4, 1.5 \text{ Hz}, 1\text{H}), 7.66 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 4.47 \text{ (q, } J = 7.1 \text{ Hz}, 2\text{H}), 2.24 - 2.11 \text{ (m, 2H)}, 1.44 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}). \\ = 7.1 \text{ Hz}, 3\text{H}). \\ = 7.1 \text{ Hz}, 3\text{H}). \\ = 12 \text{ NMR (101 MHz, CDCl_3)} \\ \delta 8.82 \text{ (d, } J = 2.0 \text{ Hz}, 1\text{H}), 8.27 \text{ (dt, } J = 6.4, 3.2 \text{ Hz}, 1\text{H}), 8.21 \text{ (s, 1H)}, \\ = 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. \\ = 14 \text{ NMR (400 MHz, CDCl_3)} \\ \delta 8.82 \text{ (d, } J = 2.0 \text{ Hz}, 1\text{H}), 8.27 \text{ (dt, } J = 6.4, 3.2 \text{ Hz}, 1\text{H}), 8.21 \text{ (s, 1H)}, \\ = 130 \text{ NMR (101 MHz, CDCl_3)} \\ \delta 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38. \\ = 14 \text{ NMR (400 MHz, CDCl_3)} \\ \delta 8.77 \text{ (d, } J = 2.0 \text{ Hz}, 1\text{H}), 8.25 - 8.21 \text{ (m, 1H)}, 8.21 \text{ (s, 1H)}, \\ 7.51 - 7.46 \text{ (m, 1H)}, 4.46 \text{ (q, } J = 7.1 \text{ Hz}, 2\text{H}), 3.06 - 2.98 \text{ (m, 2H)}, 1.76 \text{ (dt, } J = 14.9, 7.3 \text{ Hz}, 2\text{H}), 1.60 - 1.49 \text{ (m, 2H)}, 1.45 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}), 0.99 \text{ (t, } J = 7.3 \text{ Hz}, 3\text{H}). \\ = 7.3 \text{ Hz}, 2\text{H}, 1.60 - 1.49 \text{ (m, 2H)}, 1.45 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}), 0.99 \text{ (t, } J = 7.3 \text{ Hz}, 3\text{H}). \\ = 7.3 \text{ Hz}, 3\text{H}. \\ = 7.4 \text{ Hz}, 3\text{H}, 1.45 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}), 0.99 \text{ (t, } J = 7.3 \text{ Hz}, 3\text{H}). \\ = 7.3 \text{ Hz}, 3\text{H}. \\ = 7.4 \text{ Hz}, 3\text{H}, 1.60 - 1.49 \text{ (m, 2H)}, 1.45 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}), 0.99 \text{ (t, } J = 7.3 \text{ Hz}, 3\text{H}). \\ = 7.3 \text{ Hz}, 3\text{H}. \\ = 7.4 \text{ Hz}, 3\text{H}, 1.60 - 1.49 \text{ (m, 2H)}, 1.45 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}), 0.99 \text{ (t, } J = 7.3 \text{ Hz}, 3\text{H}). \\ = 7.3 \text{ Hz}, 3\text{H}. \\ = 7.4 \text{ Hz}, 3\text{H}, 1.60 - 1.49 \text{ (m, 2H)}, 1.45 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}), 0.99 \text{ (t, }$ |
| <b>13</b> {6}<br><b>14</b> {6,1}<br><b>14</b> {6,2}                                       | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$                                                                                     | = 8.24 (m, 1H), 7.86 - 7.80 (m, 2H), 7.53 - 7.45 (m, 3H), 3.54 (s, 2H). 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. $ = 14 NMR (400 MHz, CDCl3) δ 8.50 (d, J = 1.7 Hz, 1H), 8.25 (s, 1H), 8.16 (dd, J = 8.4, 1.5 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.24 - 2.11 (m, 2H), 1.44 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. $ $ = 14 NMR (400 MHz, CDCl3) δ 8.82 (d, J = 2.0 Hz, 1H), 8.27 (dt, J = 6.4, 3.2 Hz, 1H), 8.21 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H).  = 13 C NMR (101 MHz, CDCl3) δ 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38.  = 14 NMR (400 MHz, CDCl3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.25 - 8.21 (m, 1H), 8.21 (s, 1H), 7.51 - 7.46 (m, 1H), 4.46 (q, J = 7.1 Hz, 2H), 3.06 - 2.98 (m, 2H), 1.76 (dt, J = 14.9, 7.3 Hz, 2H), 1.60 - 1.49 (m, 2H), 1.45 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.3 Hz, 3H).  = 3C NMR (101 MHz, CDCl3) δ 165.76, 161.17, 148.47, 145.85, 141.34, 130.95, 129.22, 124.25, 124.25, 125.76, 126.22, 124.25, 125.76, 126.22, 124.25, 125.76, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 124.25, 126.22, 126.25, 126.22, 124.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.22, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25, 126.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>13</b> {6}<br><b>14</b> {6,1}<br><b>14</b> {6,2}                                       | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$                                                                                     | $ = 8.24 (m, 1H), 7.86 - 7.80 (m, 2H), 7.53 - 7.45 (m, 3H), 3.54 (s, 2H). 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. $ $ = 14 NMR (400 MHz, CDCl_3) δ 8.50 (d, J = 1.7 Hz, 1H), 8.25 (s, 1H), 8.16 (dd, J = 8.4, 1.5 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.24 - 2.11 (m, 2H), 1.44 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl_3) δ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. $ $ = 14 NMR (400 MHz, CDCl_3) δ 8.82 (d, J = 2.0 Hz, 1H), 8.27 (dt, J = 6.4, 3.2 Hz, 1H), 8.21 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). $ $ = 13 C NMR (101 MHz, CDCl_3) δ 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38. $ $ = 14 NMR (400 MHz, CDCl_3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.25 - 8.21 (m, 1H), 8.21 (s, 1H), 7.51 - 7.46 (m, 1H), 4.46 (q, J = 7.1 Hz, 2H), 3.06 - 2.98 (m, 2H), 1.76 (dt, J = 14.9, 7.3 Hz, 2H), 1.60 - 1.49 (m, 2H), 1.45 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.3 Hz, 3H). $ $ = 13 C NMR (101 MHz, CDCl_3) δ 165.76, 161.17, 148.47, 145.85, 141.34, 130.95, 129.22, 127.53, 126.96, 124.24, 32.15, 30.96, 29.78, 22.25, 14.38, 13.69. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>13</b> {6}<br><b>14</b> {6,1}<br><b>14</b> {6,2}                                       | $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $  | = 8.24 (m, 1H), 7.86 - 7.80 (m, 2H), 7.53 - 7.45 (m, 3H), 3.54 (s, 2H). 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. $ = 14 NMR (400 MHz, CDCl3) δ 8.50 (d, J = 1.7 Hz, 1H), 8.25 (s, 1H), 8.16 (dd, J = 8.4, 1.5 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.24 - 2.11 (m, 2H), 1.44 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. $ $ = 14 NMR (400 MHz, CDCl3) δ 8.82 (d, J = 2.0 Hz, 1H), 8.27 (dt, J = 6.4, 3.2 Hz, 1H), 8.21 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). $ $ = 13C NMR (101 MHz, CDCl3) δ 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38. $ $ = 14 NMR (400 MHz, CDCl3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.25 - 8.21 (m, 1H), 8.21 (s, 1H), 7.51 - 7.46 (m, 1H), 4.46 (q, J = 7.1 Hz, 2H), 3.06 - 2.98 (m, 2H), 1.76 (dt, J = 14.9, 7.3 Hz, 2H), 1.60 - 1.49 (m, 2H), 1.45 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.3 Hz, 3H). $ $ = 13C NMR (101 MHz, CDCl3) δ 165.76, 161.17, 148.47, 145.85, 141.34, 130.95, 129.22, 127.53, 126.96, 124.24, 32.15, 30.96, 29.78, 22.25, 14.38, 13.69.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>13</b> {6}<br><b>14</b> {6,1}<br><b>14</b> {6,2}                                       | $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $  | = 8.24 (m, 1H), 7.86 = 7.80 (m, 2H), 7.53 = 7.45 (m, 3H), 3.54 (s, 2H). 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. $ = 14 NMR (400 MHz, CDCl3) δ 8.50 (d, J = 1.7 Hz, 1H), 8.25 (s, 1H), 8.16 (dd, J = 8.4, 1.5 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.24 = 2.11 (m, 2H), 1.44 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. $ $ = 14 NMR (400 MHz, CDCl3) δ 8.82 (d, J = 2.0 Hz, 1H), 8.27 (dt, J = 6.4, 3.2 Hz, 1H), 8.21 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). $ $ = 13 C NMR (101 MHz, CDCl3) δ 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38. $ $ = 14 NMR (400 MHz, CDCl3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.25 - 8.21 (m, 1H), 8.21 (s, 1H), 7.51 - 7.46 (m, 1H), 4.46 (q, J = 7.1 Hz, 2H), 3.06 - 2.98 (m, 2H), 1.76 (dt, J = 14.9, 7.3 Hz, 2H), 1.60 - 1.49 (m, 2H), 1.45 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.3 Hz, 3H). $ $ = 13 C NMR (101 MHz, CDCl3) δ 165.76, 161.17, 148.47, 145.85, 141.34, 130.95, 129.22, 127.53, 126.96, 124.24, 32.15, 30.96, 29.78, 22.25, 14.38, 13.69. $ $ = 14 NMR (400 MHz, CDCl3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.23 - 8.16 (m, 2H), 7.58 - 7.50 (m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13{6}<br>14{6,1}<br>14{6,2}<br>14{6,3}                                                    | $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $  | = 8.24 (m, 1H), 7.86 = 7.80 (m, 2H), 7.53 = 7.45 (m, 3H), 3.54 (s, 2H). 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. $ = 14 NMR (400 MHz, CDCl3) δ 8.50 (d, J = 1.7 Hz, 1H), 8.25 (s, 1H), 8.16 (dd, J = 8.4, 1.5 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.24 = 2.11 (m, 2H), 1.44 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. $ $ = 14 NMR (400 MHz, CDCl3) δ 8.82 (d, J = 2.0 Hz, 1H), 8.27 (dt, J = 6.4, 3.2 Hz, 1H), 8.21 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). $ $ = 13 C NMR (101 MHz, CDCl3) δ 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38. $ $ = 14 NMR (400 MHz, CDCl3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.25 - 8.21 (m, 1H), 8.21 (s, 1H), 7.51 - 7.46 (m, 1H), 4.46 (q, J = 7.1 Hz, 2H), 3.06 - 2.98 (m, 2H), 1.76 (dt, J = 14.9, 7.3 Hz, 2H), 1.60 - 1.49 (m, 2H), 1.45 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.3 Hz, 3H). $ $ = 13 C NMR (101 MHz, CDCl3) δ 165.76, 161.17, 148.47, 145.85, 141.34, 130.95, 129.22, 127.53, 126.96, 124.24, 32.15, 30.96, 29.78, 22.25, 14.38, 13.69. $ $ = 14 NMR (400 MHz, CDCl3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.23 - 8.16 (m, 2H), 7.58 - 7.50 (m, 1H), 7.46 - 7.41 (m, 2H), 7.38 - 7.28 (m, 3H), 4.46 (q, J = 7.1 Hz, 2H), 4.26 (s, 2H), 1.44 (t, the result) a the result of the result of$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13{6}<br>14{6,1}<br>14{6,2}<br>14{6,3}                                                    | $ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ = 8.24 (m, 1H), 7.86 - 7.80 (m, 2H), 7.53 - 7.45 (m, 3H), 3.54 (s, 2H). 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. $ $ = 14 NMR (400 MHz, CDCl_3) δ 8.50 (d, J = 1.7 Hz, 1H), 8.25 (s, 1H), 8.16 (dd, J = 8.4, 1.5 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.24 - 2.11 (m, 2H), 1.44 (t, J = 7.1 Hz, 3H). = CNMR (101 MHz, CDCl_3) δ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37. $ $ = 14 NMR (400 MHz, CDCl_3) δ 8.82 (d, J = 2.0 Hz, 1H), 8.27 (dt, J = 6.4, 3.2 Hz, 1H), 8.21 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). = CNMR (101 MHz, CDCl_3) δ 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38. ]$ $ = 14 NMR (400 MHz, CDCl_3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.25 - 8.21 (m, 1H), 8.21 (s, 1H), 7.51 - 7.46 (m, 1H), 4.46 (q, J = 7.1 Hz, 2H), 3.06 - 2.98 (m, 2H), 1.76 (dt, J = 14.9, 7.3 Hz, 2H), 1.60 - 1.49 (m, 2H), 1.45 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.3 Hz, 3H). = 13C NMR (101 MHz, CDCl_3) δ 165.76, 161.17, 148.47, 145.85, 141.34, 130.95, 129.22, 127.53, 126.96, 124.24, 32.15, 30.96, 29.78, 22.25, 14.38, 13.69. ]$ $ = 14 NMR (400 MHz, CDCl_3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.23 - 8.16 (m, 2H), 7.58 - 7.50 (m, 1H), 7.46 - 7.41 (m, 2H), 7.38 - 7.28 (m, 3H), 4.46 (q, J = 7.1 Hz, 2H), 4.26 (s, 2H), 1.44 (t, J = 7.1 Hz, 3H). ]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>13</b> {6}<br><b>14</b> {6,1}<br><b>14</b> {6,2}<br><b>14</b> {6,3}                    | $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $  | = -8.24 (m, 1H), 7.86 - 7.80 (m, 2H), 7.53 - 7.45 (m, 3H), 3.54 (s, 2H). 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. $ =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>13</b> {6}<br><b>14</b> {6,1}<br><b>14</b> {6,2}<br><b>14</b> {6,3}                    | $ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ = -8.24 \text{ (m, 1H)}, 7.86 - 7.80 \text{ (m, 2H)}, 7.53 - 7.45 \text{ (m, 3H)}, 3.54 \text{ (s, 2H)}. 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45. \\ =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>13</b> {6}<br><b>14</b> {6,1}<br><b>14</b> {6,2}<br><b>14</b> {6,3}                    | $ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \end{array} \\ & \\ & \end{array} \end{array} \\ & \begin{array}{c} & \\ & \\ \end{array} \\ & \\ & \\ \end{array} \\ & \\ & \\ \end{array} \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ = 8.24 (m, 1H), 7.86 - 7.80 (m, 2H), 7.53 - 7.45 (m, 3H), 3.54 (s, 2H). 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45.  = 14 NMR (400 MHz, CDCl3) δ 8.50 (d, J = 1.7 Hz, 1H), 8.25 (s, 1H), 8.16 (dd, J = 8.4, 1.5 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.24 - 2.11 (m, 2H), 1.44 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 164.64, 160.99, 148.79, 148.36, 132.64, 132.61, 130.77, 128.91, 128.19, 123.60, 61.86, 14.37.  = 14 NMR (400 MHz, CDCl3) δ 8.82 (d, J = 2.0 Hz, 1H), 8.27 (dt, J = 6.4, 3.2 Hz, 1H), 8.21 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H).  = 16 CNMR (101 MHz, CDCl3) δ 165.72, 161.16, 148.49, 145.43, 142.14, 131.21, 129.26, 127.56, 126.22, 124.25, 61.76, 16.14, 14.38.  = 14 NMR (400 MHz, CDCl3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.25 - 8.21 (m, 1H), 8.21 (s, 1H), 7.51 - 7.46 (m, 1H), 4.46 (q, J = 7.1 Hz, 2H), 3.06 - 2.98 (m, 2H), 1.76 (dt, J = 14.9, 7.3 Hz, 2H), 1.60 - 1.49 (m, 2H), 1.45 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.3 Hz, 3H).  = 13 C NMR (101 MHz, CDCl3) δ 165.76, 161.17, 148.47, 145.85, 141.34, 130.95, 129.22, 127.53, 126.96, 124.24, 32.15, 30.96, 29.78, 22.25, 14.38, 13.69.  = 14 NMR (400 MHz, CDCl3) δ 8.77 (d, J = 2.0 Hz, 1H), 8.23 - 8.16 (m, 2H), 7.58 - 7.50 (m, 1H), 7.46 - 7.41 (m, 2H), 7.38 - 7.28 (m, 3H), 4.46 (q, J = 7.1 Hz, 2H), 4.26 (s, 2H), 1.44 (t, J = 7.1 Hz, 3H).  = 3 C NMR (101 MHz, CDCl3) δ 165.60, 161.13, 148.49, 145.64, 140.68, 134.46, 131.09, 129.63, 129.08, 128.96, 127.99, 127.61, 127.32, 124.13, 37.61, 30.96, 14.38.  = 0 NMR (101 MHz, CDCl3) δ 165.60, 161.13, 148.49, 145.64, 140.68, 134.46, 131.09, 129.63, 129.08, 128.96, 127.99, 127.61, 127.32, 124.13, 37.61, 30.96, 14.38.  = 0 NMR (101 MHz, CDCl3) δ 165.60, 161.13, 148.49, 145.64, 140.68, 134.46, 131.09, 129.63, 129.08, 128.96, 127.99, 127.61, 127.32, 124.13, 37.61, 30.96, 14.38. \\ =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>13</b> {6}<br><b>14</b> {6,1}<br><b>14</b> {6,2}<br><b>14</b> {6,3}<br><b>15</b> {6,1} | $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $  | = -8.24 (m, 1H), 7.86 - 7.80 (m, 2H), 7.53 - 7.45 (m, 3H), 3.54 (s, 2H). 13C NMR (101 MHz, DMSO) δ 163.80, 161.77, 159.24, 148.87, 138.09, 133.87, 133.33, 132.31, 130.48, 129.90, 129.26, 127.78, 126.69, 122.41, 44.45.  =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13{6}<br>14{6,1}<br>14{6,2}<br>14{6,3}<br>15{6,1}                                         | $ \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $13{6}$ $14{6,1}$ $14{6,2}$ $14{6,3}$ $15{6,1}$                                           | $ \begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| 15{6,2}                           | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.47 (d, $J = 1.7$ Hz, 1H), 8.33 (m, 2H), 8.23 – 8.20 (m, 1H),<br>4.48 (q, $J = 7.1$ Hz, 2H), 3.64 – 3.50 (m, 2H), 1.87 – 1.73 (m, 2H), 1.48 (m, 5H), 0.96 (t, $J = 7.4$ Hz, 3H). <sup>13</sup> C NMR (101 MHz, CDCl <sub>3</sub> ) $\delta$ 163.60, 160.79, 149.91, 149.27, 138.80, 133.78,<br>133.10, 129.81, 129.29, 122.81, 61.99, 56.55, 24.55, 21.57, 14.36, 13.53.     |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15{6,3}                           | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.43 (d, $J$ = 1.7 Hz, 1H), 8.32 (s, 1H), 8.04 (dd, $J$ = 8.2, 1.7 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.32 – 7.23 (m, 6H), 4.83 (s, 2H), 4.52 – 4.40 (m, 3H), 1.49 – 1.40 (m, 4H). <sup>13</sup> C NMR (101 MHz, CDCl <sub>3</sub> ) $\delta$ 163.60, 160.76, 149.89, 149.22, 138.60, 133.77, 132.51, 130.99, 129.32, 129.22, 129.17, 128.93, 127.23, 122.51, 62.83, 62.00, 14.33. |
| <b>16</b> { <i>6</i> , <i>1</i> } | <sup>1</sup> H NMR (400 MHz, DMSO) δ 13.37 (s, 1H), 8.72 (s, 1H), 8.63 (d, $J = 1.8$ Hz, 1H), 8.52 (d, $J = 8.3$ , 1.8 Hz, 1H), 8.26 (d, $J = 8.3$ Hz, 1H), 3.54 (s, 3H). <sup>13</sup> C NMR (101 MHz, DMSO) δ 163.23, 161.68, 148.86, 148.68, 138.33, 133.50, 132.33, 131.56, 130.20, 122.26, 44.47.                                                                                                                                  |
| 16{6,2}                           | <sup>1</sup> H NMR (400 MHz, DMSO) $\delta$ 13.36 (s, 1H), 8.72 (s, 1H), 8.64 (d, $J$ = 1.6 Hz, 1H), 8.51 (dd, $J$ = 8.3, 1.7 Hz, 1H), 8.23 (d, $J$ = 8.3 Hz, 1H), 3.68 – 3.57 (m, 2H), 1.75 – 1.61 (m, 2H), 1.49 – 1.36 (m, 2H), 0.89 (t, $J$ = 7.3 Hz, 4H). <sup>13</sup> C NMR (101 MHz, DMSO) $\delta$ 163.23, 161.68, 149.14, 148.67, 138.45, 132.95, 131.96, 131.60, 130.07, 122.39, 55.37, 23.98, 20.78, 13.33.                  |
| <b>16</b> { <i>6</i> , <i>3</i> } | <sup>1</sup> H NMR (400 MHz, DMSO) $\delta$ 13.26 (s, 1H), 8.63 (s, 1H), 8.56 (d, $J$ = 1.8 Hz, 1H), 8.27 (dd, $J$ = 8.3, 1.8 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.31 – 7.25 (m, 3H), 7.24 – 7.18 (m, 2H), 4.90 (s, 2H). <sup>13</sup> C NMR (101 MHz, DMSO) $\delta$ 163.15, 161.66, 149.23, 148.65, 138.48, 133.22, 131.66, 131.27, 131.18, 129.56, 128.98, 128.65, 127.30, 126.46, 122.35, 61.69.                                         |

## Final products.

|                                     |                                                                                                  | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.40 (d, $J = 1.6$ Hz, 1H), 8.31 – 8.18 (m, 2H), 4.23 (br, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | $\sim$                                                                                           | 3.46 (s, 3H), 2.92 (brs, 2H), 2.52 (s, 3H), 1.84 – 1.69 (m, 3H), 1.16 (t, J = 23.1 Hz, 2H), 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     |                                                                                                  | $(d, J = 6.4 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 161.62, 161.23, 153.55, 149.70, 139.35,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>9</b> (2, 1, 5)                  | o<br>s<br>s<br>s<br>s<br>s                                                                       | 134.42, 132.32, 129.57, 128.23, 122.37, 45.18, 34.28, 31.05, 21.62, 16.39. LC/MS (ESI) <i>m/z</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Z</b> {Z, 1, 0}                  | O NO <sub>2</sub>                                                                                | $^{1}$ H NMR (400 MHz CDCl <sub>2</sub> ) $\delta$ 8 40 (s 1H) 8 26 (m 2H) 4 61 (s 0 5H) 4 14 (t 1 - 4 1 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     | $\sim$                                                                                           | 0.5H, $3.67$ (d. $J = 12.5$ Hz, $0.5$ ), $3.46$ (s, $3H$ ), $3.43$ (d. $J = 10.2$ Hz, $0.5H$ ), $3.27$ (dd. $J = 15.5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | N K N                                                                                            | 5.1 Hz, 1H), 2.60 (d, $J = 7.8$ Hz, 1.5H), 2.57 (s, 1.5H), 2.28 – 2.18 (m, 0.5H), 1.89 – 1.75 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     | ° S O                                                                                            | 1H), 1.74 – 1.55 (m, 2H), 1.55 – 1.29 (m, 3.5H), 1.10 (m, 6H), 0.98 (d, <i>J</i> = 7.6 Hz, 3H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>2</b> {2,1,2}                    | NO2                                                                                              | LC/MS (ESI) $m/z$ 478.32 [M+H] <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     |                                                                                                  | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.41 (d, $J = 1.5$ Hz, 1H), 8.28 – 8.13 (m, 2H), 3.76 – 3.48 (m, 4H) 2.46 (z, 2H) 2.81 (z, L, 7.5 Hz, 2H) 1.81 – 1.57 (m, 7H) 1.26 (z, L, 7.5 Hz, 2H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     | o s                                                                                              | $(4\pi)$ , 5.40 (8, 5\pi), 2.81 (1, $J = 7.5$ Hz, 2 $\pi$ ), 1.81 – 1.57 (III, 7 $\pi$ ), 1.50 (1, $J = 7.5$ Hz, 5 $\pi$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>2</b> {3,1,4}                    | S T<br>O NO <sub>2</sub>                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     | XX.                                                                                              | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.42 (d, $J = 0.9$ Hz, 1H), 8.28 – 8.21 (m, 2H), 4.61 (s, 0.5H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                     | N N N                                                                                            | 4.11 (m, 0.5H), 3.66 (d, $J = 12.5$ Hz, 0.5H), 3.46 (s, 3H), 3.42 (d, $J = 10.0$ Hz, 0.5H), 3.30 – 2.10 (m, 1H), 2.07 – 2.82 (m, 2H), 2.22 (d, $L = 10.7$ Hz, 0.5H), 1.88 – 1.74 (m, 1H), 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>2</b> [312]                      |                                                                                                  | 1.19 (III, 1H), 2.97 - 2.82 (III, 2H), 2.22 (III, 3 = 10.7  Hz, 0.5H), 1.88 - 1.74 (III, 1H), 1.70 - 1.77 (m, 8H), 1.10 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8  Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8 Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8 Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8 Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8 Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8 Hz, 3H), 1.00 (m, 6H), 0.98 (d, 1 - 6.8 Hz, 3H), 0.00 (m, 6H), 0.00 (m, 6H) |
| <b>L</b> [0, 1, <b>L</b> ]          | 0 NO2                                                                                            | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.14 (d, J = 8.2 Hz, 1H), 7.99 (s, 1H), 7.85 (t, J = 11.9 Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                     | N                                                                                                | 1H), 7.78 (s, 1H), 7.40 – 7.28 (m, 3H), 7.16 (d, <i>J</i> = 7.0 Hz, 2H), 3.96 – 3.87 (m, 2H), 3.42 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                     | o<br>s                                                                                           | 3H), 2.17 (s, 2H), 1.77 – 1.66 (m, 2H), 0.97 (t, <i>J</i> = 7.4 Hz, 3H). LC/MS (ESI) <i>m</i> / <i>z</i> 446.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>3</b> {6,1,13}                   | Ö NO2                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     | N HN                                                                                             | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.43 (d, $J = 0.7$ Hz, 1H), 8.30 – 8.18 (m, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| • • • •                             | °°°, °°, °°, °°, °°, °°, °°, °°, °°, °°                                                          | 8.14 (s, 1H), 5.78 (s, 1H), 3.46 (s, 3H), 2.18 – 2.10 (m, 9H), 1.73 (s, 5H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>2</b> {1,1,1}                    | ő No <sub>2</sub>                                                                                | LC/MS (ESI) $m/z$ 462.1 [M+H]'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                     |                                                                                                  | H NMR (400 MHZ, CDCl <sub>3</sub> ) 0 8.44 (d, $J = 0.0$ HZ, 1H), 8.55 – 8.22 (m, 2H), 8.05 (s, 1H),<br>3 70 (s, 4H) 3 47 (s, 3H) 1 80 – 1 72 (m, 2H) 1 72 – 1 64 (m, 4H) L C/MS (FSI) $m/7$ 396 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | o s' o                                                                                           | $[M+H]^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>2</b> {1,1,4}                    | ő No <sub>2</sub>                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     | N F N                                                                                            | H NMR (400 MHZ, CDCl <sub>3</sub> ) 0 8.44 (dd, $J = 4.7, 4.2$ HZ, 1H), 8.51 – 8.21 (m, 2H), 8.05 (s, 1H) $4.40$ (br 2H) $3.47$ (s 3H) $3.13$ (br 2H) $1.83 - 1.65$ (m 3H) $1.33 - 1.16$ (m 2H) $1.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                     | ° S S S S S S S S S S S S S S S S S S S                                                          | (d, $J = 6.4$ Hz, 3H), LC/MS (ESI) $m/z$ 478.26 [M+H] <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>2</b> { <i>4,1,5</i> }           | Š NO2                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     | N N N N                                                                                          | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.44 (s, 1H), 8.33 – 8.22 (m, 2H), 8.18 (s, 1H), 7.37 (s, 1H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2(1 1 16)                           | O F                                                                                              | 1.13 - 0.90 (III, 5H), 4.78 (8, 2H), 5.47 (8, 5H), 5.21 (8, 5H), 2.17 (8, 5H). LC/MS (ESI) $m/2450.22$ [M+H] <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>2</b> (1,1,10)                   |                                                                                                  | <sup>1</sup> H NMR (400 MHz, CDCl <sub>2</sub> ) $\delta$ 8.51 – 8.46 (m, 1H), 8.32 – 8.24 (m, 2H), 7.80 (dt. J = 8.5, 2.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     | N N                                                                                              | Hz, 2H), 7.50 – 7.41 (m, 3H), 3.70 (s, 2H), 3.47 (s, 3H), 3.08 (s, 2H), 1.66 – 1.46 (m, 2H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     | O S O                                                                                            | 1.05 (s, 2H). LC/MS (ESI) $m/z$ 472.31 [M+H] <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>2</b> {5,1,4}                    | 0 NO <sub>2</sub>                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     |                                                                                                  | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.42 (d, $J = 1.6$ Hz, 1H), 8.33 – 8.29 (m, 1H), 8.28 – 8.25 (m, 1H), 2.70 – 2.70 (m, 2H), 2.47 (a, 2H), 2.25 – 2.20 (m, 2H), 1.71 (a, 4H), 1.50 (a, 2H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     | ° s o                                                                                            | 1.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>2</b> { <i>4</i> , 1, <i>4</i> } | Š V<br>U NO <sub>2</sub>                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     | F C                                                                                              | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.42 (d, $J = 1.6$ Hz, 1H), 8.31 (d, $J = 8.2$ Hz, 1H), 8.27 (dd, $J = 0.2 \pm 7.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                     |                                                                                                  | = 8.2, 1.7 Hz, 1H), 4.68 (d, $J = 13.2$ Hz, 1H), 3.54 (d, $J = 13.1$ Hz, 1H), 3.47 (s, 3H), 3.19 – 2.07 (m, 1H), 2.02 = 2.76 (m, 1H), 1.81 (d, $L = 12.5$ Hz, 1H), 1.77 = 1.62 (m, 2H), 1.24 = 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>2</b> {415}                      |                                                                                                  | $(m, 1H), 2.92 - 2.70$ (m, 1H), 1.81 (d, $J = 15.5$ Hz, 1H), 1.77 - 1.05 (m, 2H), 1.34 - 1.10 (m, 2H), 1.00 (d, $J = 6.3$ Hz, 3H) LC/MS (ESI) $m/_{7}$ 478 26 [M+H] <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _[,,,,0]                            | F_F \_                                                                                           | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.47 (d, J = 1.0 Hz, 1H), 8.35 – 8.28 (m, 2H), 8.23 (br, 0.3H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                     | NNN                                                                                              | 7.29 (d, J = 7.8 Hz, 1H), 7.08 (br, 1.7H), 6.04 (s, 0.5H), 5.06 (s, 0.5H), 4.41 (s, 0.7H), 3.48 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>2</b> (4 1 0)                    | O<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | 4.3H), 2.71 (d, $J = 15.9$ Hz, 1H), 1.32 (m, 3H). LC/MS (ESI) $m/z$ 512.23 [M+H] <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>∠</b> {4,1,9}                    | O NO2                                                                                            | $^{1}$ H NMR (400 MHz CDCl <sub>2</sub> ) $\delta$ 8 44 (d $I = 1.5$ Hz 1H) 8 30 (m 2H) 7 29 – 7 12 (m 3.6H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                  | 6.96 (d, J = 7.2 Hz, 0.41H), 4.94 (s, 1.2H), 4.52 (s, 0.8H), 4.03 (t, J = 6.0 Hz, 0.8H), 3.64 (t, J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                     | of starts                                                                                        | = 5.8 Hz, 1.2H), 3.48 (s, 3H), 3.01 (t, $J = 5.8$ Hz, 0.8H), 2.91 (t, $J = 5.6$ Hz, 1.2H). LC/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>2</b> { <i>4</i> , 1, 11}        | S Y<br>O NO <sub>2</sub>                                                                         | (ESI) $m/z$ 512.23 [M+H] <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                     |                                                                                                  | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.44 – 8.40 (m, 1H), 8.36 – 8.25 (m, 2H), 4.71 – 4.61 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | , FF                                                                                             | 0.4H, $3.96$ (t, $J = 4.1$ Hz, $0.6H$ ), $3.78 - 3.73$ (m, $0.5H$ ), $3.70 - 3.61$ (m, $0.5H$ ), $3.48$ (s, $3H$ ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     |                                                                                                  | 1.35 - 1.24 (m, 1H), $1.16$ (s, 2H), $1.10$ (m, 4H), $0.99$ (d, $J = 12.3$ Hz, $3$ H) LC/MS (FSU m/z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>2</b> { <i>4</i> , 1,2}          |                                                                                                  | $532.29 [M+H]^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| <b>2</b> {4, 1, 14} |                                                                                | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.40 (dd, $J$ = 19.5, 1.3 Hz, 1H), 8.35 – 8.19 (m, 2H), 7.43 – 7.28 (m, 4H), 7.14 (d, $J$ = 7.1 Hz, 1H), 4.78 (s, 1.2H), 4.50 (s, 0.8H), 3.50 – 3.44 (m, 3H), 3.07 (s, 1H), 2.88 (s, 2H). LC/MS (ESI) $m/z$ 500.28 [M+H] <sup>+</sup>                                                     |
|---------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2</b> {4,1,15}   | $\bigcap_{i=1\\j\in I\\j\in I\\j\in I\\j\in I\\j\in I\\j\in I\\j\in I\\j\in I$ | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.44 – 8.38 (m, 1H), 8.33 – 8.22 (m, 2H), 7.43 (t, <i>J</i> = 7.5 Hz, 1H), 7.39 – 7.29 (m, 1H), 7.23 – 7.15 (m, 1H), 7.15 – 7.04 (m, 1H), 4.85 (s, 1.2H), 4.54 (s, 0.8H), 3.48 (s, 3H), 3.07 (s, 1H), 2.94 (s, 2H). LC/MS (ESI) <i>m</i> / <i>z</i> 518.24 [M+H] <sup>+</sup>             |
| <b>2</b> {4, 1, 16} |                                                                                | <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) $\delta$ 8.43 (d, $J = 1.4$ Hz, 0.6H), 8.39 (s, 0.4H), 8.28 (m, 2H), 7.40 – 7.30 (m, 1H), 7.12 (d, $J = 7.7$ Hz, 0.7H), 7.09 – 7.02 (m, 1.6H), 6.90 (m, 0.7H), 4.77 (s, 1.3H), 4.50 (s, 0.7H), 3.47 (s, 3H), 3.10 (s, 1H), 2.91 (s, 2H). LC/MS (ESI) <i>m</i> / <i>z</i> 518.24 [M+H] <sup>+</sup> |

#### Compound 5



#### Comound 6



so

f1 (ppm) - 2000 - 0 - -2000



8{1}









f1 (ppm)



so

зо

ò











- 18000

PROTON CDCI3 /opt jyhwang 41

















9{3,1}





















 $10{1,1}$ 









10{2,1}



Faz

5.0 4.5 4.0 f1 (ppm)

월립월

8.0

7.5

7.0

6.5

6.0

5.5

8.5

10.0

9.5

9.0

Hei2

3.5

Щ.

2.5

з.о

Fig. 2

1.5

2.0

Fa

1.0

0.5

0.0

-0.5

0





C13CPD CDCl3 /opt jyhwang 13





#### 10{3,2}















#### 10{5,1}









15{6,2}









![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_29_Figure_3.jpeg)

- 4000 -- 2000 -- 0 -- -2000

0

10

![](_page_29_Figure_4.jpeg)

![](_page_30_Figure_0.jpeg)

### 11{2,2}

![](_page_30_Figure_2.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_32_Figure_0.jpeg)

#### 11{3,2}

![](_page_32_Figure_2.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Figure_3.jpeg)

![](_page_34_Figure_0.jpeg)

11{5,1}

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

![](_page_35_Figure_0.jpeg)

-2000

-4.0

PROTON CDCI3 /opt jyhwang 29

10.0 9.5 9.0 8.5 8.0 7.5

![](_page_35_Figure_1.jpeg)

 Image: state state

![](_page_36_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_37_Figure_2.jpeg)

![](_page_37_Figure_3.jpeg)

![](_page_37_Figure_4.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_50_Figure_0.jpeg)

#### S51

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_55_Figure_0.jpeg)