Supporting Information for:

Structural and Photophysical Properties of Visible– and Near–Infrared–Emitting Tris Lanthanide(III) Complexes Formed with the Enantiomers of *N*,*N*'–bis(1–phenylethyl) –2,6–pyridinedicarboxamide

KimNgan T. Hua,[†] Jide Xu,[‡] Eliseo E. Quiroz,[†] Sabrina Lopez,[†] Andrew J. Ingram,[†] Victoria Anne Johnson,[†] Angela R. Tisch,[†] Ana de Bettencourt–Dias,[#] Daniel A. Straus,[†] and Gilles Muller^{*,†}

[†] San José State University, Department of Chemistry, 1 Washington Square, San José, California 95192–0101, United States

[‡]University of California, Berkeley, Department of Chemistry, Berkeley, California 94720–1460, United States

[#] University of Nevada, Reno, Department of Chemistry, 1664 N. Virginia St., Reno, Nevada 89557–0216, United States

*: gilles.muller@sjsu.edu

Figure S1. Variable Temperature ${}^{1}H$ -NMR spectra of (*R*,*R*)-1 (top) and (*R*,S)-1 (bottom) in CDCl₃. The symbol * denotes signal arising from the proton of the NH group.

O(1)-C(9)	1.228(3)	C(11)-C(12)	1.377(3)	C(9)-N(1)-C(7)	123.7(2)	N(2)-C(14)-C(15) 117.0(2)
O(2)-C(15)	1.237(3)	C(12)-C(13)	1.375(3)	C(10)-N(2)-C(14)	117.30(19)	C(13)-C(14)-C(15) 119.9(2)
O(3)-C(32)	1.236(3)	C(13)-C(14)	1.386(3)	C(15)-N(3)-C(16)	122.7(2)	O(2)-C(15)-N(3) 124.3(2)
O(4)-C(38)	1.236(3)	C(14)-C(15)	1.506(3)	C(32)-N(4)-C(30)	122.31(19)	O(2)-C(15)-C(14) 120.4(2)
N(1)-C(9)	1.327(3)	C(16)-C(17)	1.502(4)	C(33)-N(5)-C(37)	116.84(19)	N(3)-C(15)-C(14) 115.3(2)
N(1)-C(7)	1.467(3)	C(24)-C(25)	1.378(3)	C(38)-N(6)-C(39)	120.68(19)	N(3)-C(16)-C(18A) 115.9(8)
N(2)-C(10)	1.337(3)	C(24)-C(29)	1.380(3)	C(6)-C(1)-C(2)	121.9(3)	N(3)-C(16)-C(17) 110.0(2)
N(2)-C(14)	1.342(3)	C(25)-C(26)	1.373(4)	C(3)-C(2)-C(1)	120.0(3)	C(18A)-C(16)-C(17) 116.2(8)
N(3)-C(15)	1.333(3)	C(26)-C(27)	1.363(4)	C(2)-C(3)-C(4)	119.4(3)	N(3)-C(16)-C(18B) 105.2(8)
N(3)-C(16)	1.460(3)	C(27)-C(28)	1.372(3)	C(3)-C(4)-C(5)	120.6(3)	N(4)-C(30)-C(29) 112.32(19)
N(4)-C(32)	1.331(3)	C(28)-C(29)	1.383(3)	C(6)-C(5)-C(4)	121.6(3)	N(4)-C(30)-C(31) 111.09(19)
N(4)-C(30)	1.454(3)	C(29)-C(30)	1.515(3)	C(5)-C(6)-C(1)	116.6(2)	C(29)-C(30)-C(31) 110.60(19)
N(5)-C(33)	1.345(3)	C(30)-C(31)	1.521(3)	C(5)-C(6)-C(7)	122.2(2)	O(3)-C(32)-N(4) 123.9(2)
N(5)-C(37)	1.345(3)	C(32)-C(33)	1.497(3)	C(1)-C(6)-C(7)	121.2(2)	O(3)-C(32)-C(33) 119.3(2)
N(6)-C(38)	1.330(3)	C(33)-C(34)	1.382(3)	N(1)-C(7)-C(8)	110.65(19)	N(4)-C(32)-C(33) 116.8(2)
N(6)-C(39)	1.462(3)	C(34)-C(35)	1.366(3)	N(1)-C(7)-C(6)	110.3(2)	N(5)-C(33)-C(34) 122.6(2)
C(1)-C(6)	1.375(4)	C(36)-C(37)	1.373(3)	C(8)-C(7)-C(6)	114.8(2)	N(5)-C(33)-C(32) 117.3(2)
C(1)-C(2)	1.386(4)	C(37)-C(38)	1.505(3)	O(1)-C(9)-N(1)	124.4(2)	C(34)-C(33)-C(32) 120.1(2)
C(2)-C(3)	1.350(4)	C(39)-C(41)	1.515(3)	O(1)-C(9)-C(10)	119.6(2)	C(35)-C(34)-C(33) 119.9(2)
C(3)-C(4)	1.351(4)	C(39)-C(40)	1.516(3)	N(1)-C(9)-C(10)	116.1(2)	C(34)-C(35)-C(36) 118.2(2)
C(4)-C(5)	1.385(4)	C(41)-C(46)	1.372(3)	N(2)-C(10)-C(11)	122.8(2)	C(37)-C(36)-C(35) 119.0(2)
C(5)-C(6)	1.367(3)	C(41)-C(42)	1.374(3)	N(2)-C(10)-C(9)	118.0(2)	N(5)-C(37)-C(36) 123.5(2)
C(6)-C(7)	1.511(3)	C(42)-C(43)	1.389(4)	C(11)-C(10)-C(9)	119.1(2)	N(5)-C(37)-C(38) 116.81(19)
C(7)-C(8)	1.508(3)	C(43)-C(44)	1.372(4)	C(10)-C(11)-C(12)	119.5(2)	C(36)-C(37)-C(38) 119.7(2)
C(9)-C(10)	1.509(3)	C(44)-C(45)	1.347(5)	C(13)-C(12)-C(11)	118.6(2)	O(4)-C(38)-N(6) 123.5(2)
C(10)-C(11)	1.376(3)	C(45)-C(46)	1.374(4)	C(12)-C(13)-C(14)	118.7(2)	O(4)-C(38)-C(37) 119.8(2)

Table S1. Selected Bond Lengths (Å) and Angles (deg) in (R,S)–1 (Standard Deviation in Parentheses).

Figure S2. Geometric optimization of the three optical isomers of **L**, (*R*,*R*)–1 (top left), (*S*,*S*)–1 (top right), and (*R*,*S*)–1 (bottom), as obtained by DFT B3LYP 6–31G(d) calculations.

Figure S3. ES–MS spectra of Eu(III) and L in anhydrous MeCN at 298 K ($\mathbf{L} = (R,R)-1$)).

Figure S4. Detail of the ES–MS signal arising from the $[EuL_3]^{3+}$ species observed in the ES–MS Spectra of Solutions ($[L]_t = 2 \times 10^{-3}$ M in Anhydrous MeCN) with Ratios $R = [Eu]_t/[L]_t = 0-4$ at 298 K (L = (R,R)-1)).

Table S2. Species Observed in the ES–MS Spectra of Solutions ($[L]_t = 2 \times 10^{-3}$ M in Anhydrous MeCN) with Ratios $R = [Eu]_t/[L]_t = 0.25, 0.33, 0.5, and 1.0 at 298 K (<math>L = (R,R)-1$)).

Species	m/z^a	Species	m/z^a
$[(L) + Na]^{+}$	396.2	[Eu(L)(Otf)(CH ₃ CN) ₁₂] ²⁺	583.7
$[Eu(L)_3]^{3+}$	424.2	[Eu(L) ₃ (Otf)] ²⁺	710.7
$[Eu(L)_2(Otf)]^{2+}$	524.1	$[Eu(L)_2(Otf)_2]^+$	667.2
$[Eu(L)_4]^{3+}$	548.6	$[Eu(L)_3(Otf)_2]^+$	1197.2

 $^{a}m/z$ values given for the maximum of the peak at unit mass resolution where Otf denotes CF₃SO₃⁻.

Figure S5. Time–resolved luminescence spectra obtained while titrating 5.15×10^{-5} M (*R*,*R*)–1 with 1.09×10^{-3} M Eu(NO₃)₃ at 298 K in anhydrous MeCN, in the presence of 0.05 M Et₄NClO₄, and under N₂ atmosphere. *R* = [Eu]_t/[(*R*,*R*)–1]_t.

Figure S6. Example of Hyperquad2006 refinement data fits from a time–resolved luminescence titration of 5.15×10^{-5} M (*R*,*R*)–1 with 1.09×10^{-3} M Eu(NO₃)₃ in anhydrous MeCN (μ = 0.05 M Et₄NClO₄) at 298 K and under N₂ atmosphere.

Figure S7. Luminescence intensity vs. R plots at various wavelengths during the time-resolved luminescence titration of 5.15×10^{-5} M (R,R)-1 with 1.09×10^{-3} M Eu(NO₃)₃ in anhydrous MeCN (μ = 0.05 M Et₄NClO₄) at 298 K and under N₂ atmosphere. R = $[Eu]_t/[(R,R)-1]_t$.

Figure S8. ¹H–NMR spectrum of a solution containing a ratio, $R = [Eu]_t/[L]_t$ of 0.2 in CD₃CN (* symbol) at 298 K. The symbols L and + denote signals arising from the L and 1:3 species, respectively (L = (R,R)–1)).

	$[EuL_3]^{3+}$ (L = (S,S)-1))	$[\mathrm{GdL}_3]^{3+}(\mathbf{L}=(R,R)\!\!-\!\!1))$	$[GdL_3]^{3+}$ (L = (S,S)–1))
empirical formula	C70.88H76.50Cl3EuN9O7.88	C _{70.88} H _{76.50} Cl ₃ GdN ₉ O _{7.88}	C _{70.88} H _{76.50} Cl ₃ GdN ₉ O _{7.88}
fw	1438.72	1444.01	1444.01
T (K)	147(2)	151(2)	143(2)
cryst syst	cubic	cubic	cubic
space group	123	123	123
a/Á	25.965(2)	25.967(2)	25.955
b/Å	25.965(2)	25.967(2)	25.955
c/Å	25.965(2)	25.967(2)	25.955
α/deg	90	90	90
β∕deg	90	90	90
v/deg	90	90	90
V/\dot{A}^3	17505.1	17509.2	17484.9
7.	8	8	8
abs coeff (mm ⁻¹)	0.856	0.897	0.898
$D/mg \cdot m^{-3}$	1.092	1.096	1.097
reflue collected	40303	56168	82880
unique reflus	5358	5364	7003
R	0.0316	0.0436	0.0420
Darams	278	341	275
final $R[I > 2\sigma(I)]$	0.0297	0.0271	0.0310
wR2	0.0816	0.0734	0.0787

Table S3. Details of the Crystallographic Data Collection, Structural Determination, and Refinement for $[LnL_3]^{3+}$ (Ln(III) = Eu, Gd, Tb, Yb and L = (R,R)-1 and/or (S,S)-1).

Table S4. Details of the Crystallographic Data Collection, Structural Determination, and Refinement for $[LnL_3]^{3+}$ (Ln(III) = Tb,
Yb and L = (R,R)-1 and/or (S,S)-1).

	$[TbL_3]^{3+}$ (L = (R,R)-1))	$[TbL_3]^{3+}$ (L = (S,S)–1))	$[YbL_3]^{3+}$ (L = (S,S)-1))
empirical formula	$C_{70.50}H_{76.25}Cl_3N_9O_{7.50}Tb$	$C_{71.50}H_{79}Cl_3N_9O_{8.50}Tb$	$C_{71.50}H_{79}Cl_3N_9O_{8.50}Yb$
fw	1434.93	1465.71	1479.83
T (K)	151(2)	151(2)	131(2)
cryst syst	cubic	cubic	cubic
space group	123	123	123
a/Å	25.938(2)	25.942(2)	25.849
b/Å	25.938(2)	25.942(2)	25.949
c/Å	25.938(2)	25.942(2)	25.949
α /deg	90	90	90
β∕deg	90	90	90
γ/deg	90	90	90
V/\dot{A}^3	17450.6	17458.6	17271.5
Z	8	8	8
abs coeff (mm ⁻¹)	0.950	0.951	1.226
$D_{\rm mg} m^{-3}$	1.092	1.115	1.138
reflns collected	103517	35964	56820
unique reflns	5337	5329	5277
R	0.0406	0.0308	0.0307
params	274	279	278
final $R[I > 2\sigma(I)]$	0.0219	0.0227	0.0193
wR2	0.0597	0.0637	0.0515

N(2)-Eu(1)	2.555(3)
Eu(1)-O(1)#1	2.388(2)
Eu(1)-O(1)#2	2.388(2)
Eu(1)-O(1)	2.388(2)
$E_{u}(1) - O(2)$	2.404(2)
$E_{1}(1) + O(2) = 1$	2.404(2)
$F_{11}(1) O(2) # 2$	2.101(2) 2.404(2)
$E_{1}(1) \cdot O(2) # 2$ $E_{1}(1) \cdot O(2) # 1$	2.101(2) 2.555(3)
$E_{1}(1) - N(2) = 1$	2.555(3)
Eu(1)- $IN(2)$ #2	2.555(5)
C(10)-N(2)-Eu(1)	119.6(2)
C(14)-N(2)-Eu(1)	120.1(2)
C(15)-N(3)-C(16)	122.7(3)
O(1)#1-Eu(1)-O(1)#2	81.05(9)
O(1)#1-Eu(1)-O(1)	81.05(9)
O(1)#2-Eu(1)-O(1)	81.05(9)
O(1) # 1.Eu(1) O(2)	144 99(8)
O(1)#2 Eu(1) $O(2)$	82 72(8)
$O(1) = 2 + 2 \cdot 1 + O(2)$	126 53(8)
O(1)#1 E ₁ (1) $O(2)$ #1	126.53(8)
O(1)#1-Eu(1)- $O(2)$ #1	120.33(0)
O(1) = 2 - Eu(1) - O(2) = 1	144.99(0)
O(1)-Eu(1)- $O(2)$ #1	82.72(8)
O(2)-Eu(1)-O(2)=1	82.41(9)
O(1)#1-Eu(1)- $O(2)$ #2	82.72(8)
O(1)#2-Eu(1)-O(2)#2	126.53(8)
O(1)-Eu(1)- $O(2)$ #2	144.99(8)
O(2)-Eu(1)-O(2)#2	82.41(9)
O(2)#1-Eu(1)-O(2)#2	82.41(9)
O(1)#1-Eu(1)-N(2)#1	63.30(8)
O(1)#2-Eu(1)-N(2)#1	139.19(9)
O(1)-Eu(1)-N(2)#1	74.66(8)
O(2)-Eu(1)-N(2)#1	138.04(9)
O(2)#1-Eu(1)-N(2)#1	63.30(8)
O(2)#2-Eu(1)-N(2)#1	70.33(8)
O(1)#1-Eu(1)-N(2)	139.19(9)
O(1)#2-Eu(1)-N(2)	74.66(8)
O(1)-Eu(1)-N(2)	63.30(8)
O(2)-Eu(1)-N(2)	63.30(8)
O(2)#1-Eu(1)-N(2)	70.33(8)
O(2)#2-Eu(1)-N(2)	138.04(9)
N(2)#1-Eu(1)-N(2)	119,953(5)
O(1)#1-Eu(1)-N(2)=2	74 66(8)
$O(1) # 2.E_1(1) N(2) # 2$	63 30(8)
$O(1)_{\pm 2} = Eu(1)_{\pm 1}(2)_{\pm 2}$	130 10(0)
$O(2) E_1(1) N(2) #2$	70 33(8)
O(2) = U(1) - N(2) = 2 O(2) = 1 = U(1) - N(2) = 2	128 04(0)
O(2)#1-EU(1)-IN(2)#2 $O(2)$ #2 $E_{1}(1) N(2)$ #2	130.04(9)
O(2)#2-Eu(1)-N(2)#2	03.30(8)
N(2)#1-Eu(1)-N(2)#2	119.953(5)
N(2)-Eu(1)-N(2)#2	119.953(5)
C(9)-O(1)-Eu(1)	125.7(2)
C(15)-O(2)-Eu(1)	125.8(2)

Table S5. Selected Bond Lengths (Å) and Angles (deg) in $\Delta - [Eu((S,S)-1)_3]^{3+}$ (Standard Deviation in Parentheses).

Symmetry transformations used to generate equivalent atoms:#1 -z+1,-x+1,y#2 -y+1,z,-x+1#3 -x+1,-y,z

N(2)-Gd(1)	2.543(2)
O(1)-Gd(1)	2.393(2)
O(2)-Gd(1)	2.3811(18)
Gd(1)-O(2)#1	2.3811(18)
Gd(1)-O(2)#2	2.3811(18)
Gd(1)-O(1)#1	2.393(2)
Gd(1)-O(1)#2	2.393(2)
Gd(1)-N(2)#1	2.543(2)
Gd(1)-N(2)#2	2.543(2)
0 (1) 1 (2) 2	213 13 (2)
C(10)-N(2)-Gd(1)	119.74(19)
C(14)-N(2)-Gd(1)	120.54(18)
C(15)-O(1)-Gd(1)	125.93(18)
C(9)-O(2)-Gd(1)	125,33(19)
O(2)#1-Gd(1)- $O(2)$ #2	80.86(8)
O(2) # 1 Gd(1) O(2) # 2	80 86(8)
O(2) # 2 Gd(1) O(2)	80.86(8)
O(2) # 1 Gd(1) O(1) # 1	127 02(7)
O(2)#2 Gd(1) $O(1)$ #1	127.02(7) 144.74(7)
O(2)-Gd(1)-O(1)#1	$83 \cap 3(7)$
O(2) = O(1) = O(1) = O(1)	144.74(7)
O(2)#1 $O((1)O(1)$	177.77(7)
O(2) = 2 + O(1) + O(1)	127 02(7)
O(2) - O(1) - O(1)	127.02(7)
O(1) # 1 Od(1) O(1) # 2 O(2) # 1 Od(1) O(1) # 2	83 03(7)
O(2) = 1 - O((1) - O(1) = 2	127 02(7)
$O(2) = 2 \cdot O(1) \cdot O(1) = 2$	12(.02(1))
O(2)- $Gd(1)$ - $O(1)$ #2	144.74(7)
$O(1) # 1 \cdot O(1) \cdot O(1) # 2$	02.04(8)
O(1) + O(1) + O(1) + Z O(2) + 1 + O(1) + V(2)	02.04(8)
O(2)#1- $Od(1)$ - $N(2)$	139.18(8)
$O(2) = 2 \cdot Od(1) \cdot N(2)$	(4.54(7)
O(2)-Gd(1)-N(2)	63.61(7)
O(1)#1-Gd(1)-N(2)	70.20(7)
O(1)-Gd(1)-N(2)	63.49(7)
O(1)#2-Gd(1)-N(2)	137.74(8)
O(2)#1-Gd(1)-N(2)#1	63.61(7)
O(2)#2-Gd(1)-N(2)#1	139.18(8)
O(2)-Gd(1)-N(2)#1	74.54(7)
O(1)#1-Gd(1)-N(2)#1	63.49(7)
O(1)-Gd(1)-N(2)#1	137.74(8)
O(1)#2-Gd(1)-N(2)#1	70.20(7)
N(2)-Gd(1)-N(2)#1	119.948(4)
O(2)#1-Gd(1)-N(2)#2	74.54(7)
O(2)#2-Gd(1)-N(2)#2	63.61(7)
O(2)-Gd(1)-N(2)#2	139.18(8)
O(1)#1-Gd(1)-N(2)#2	137.74(8)
O(1)-Gd(1)-N(2)#2	70.20(7)
O(1)#2-Gd(1)-N(2)#2	63.49(7)
N(2)-Gd(1)-N(2)#2	119.947(4)
N(2)#1-Gd(1)-N(2)#2	119.948(4)

Table S6. Selected Bond Lengths (Å) and Angles (deg) in $\Lambda - [Gd((R,R)-1)_3]^{3+}$ (Standard Deviation in Parentheses).

Symmetry transformations used to generate equivalent atoms: #1 y,z,x #2 z,x,y #3 -x+1,-y+2,z

N(2)-Gd(1)	2.541(2)
O(1)-Gd(1)	2.3751(16)
O(2)-Gd(1)	2.3962(18)
Gd(1) O(1) #1	2 3751(16)
Gd(1) O(1) # ?	2.3751(16)
Gd(1) - O(1) = 2	2.3751(10) 2.3062(18)
Od(1) O(2) = 1	2.3902(10)
Gd(1) - O(2) + 2	2.5902(10)
Gd(1)-N(2)=1	2.541(2)
Gd(1)-N(2)#2	2.541(2)
C(14)-N(2)-Gd(1)	120.61(16)
C(10)-N(2)-Gd(1)	119 57(16)
C(9)O(1)Gd(1)	125 70(16)
C(15) O(2) Cd(1)	125.76(16)
O(1)#1 Gd(1)O(1)	20.68(7)
O(1) + 1 - O(1) + 0(1)	00.00(7)
O(1) = 1 + O(1) + 2	80.08(7)
O(1)-Gd(1)-O(1)#2	80.68(7)
O(1)#1-Gd(1)-O(2)#1	127.16(6)
O(1)-Gd(1)-O(2)#1	83.14(7)
O(1)#2-Gd(1)-O(2)#1	144.68(6)
O(1)#1-Gd(1)-O(2)#2	83.14(7)
O(1)-Gd(1)-O(2)#2	144.68(6)
O(1)#2-Gd(1)-O(2)#2	127.16(6)
O(2)#1-Gd(1)-O(2)#2	82.02(8)
O(1)#1-Gd(1)-O(2)	144.68(6)
O(1)-Gd(1)-O(2)	127.16(6)
O(1)#2-Gd(1)-O(2)	83.14(7)
O(2)#1-Gd(1)-O(2)	82.02(8)
O(2)#2-Gd(1)-O(2)	82.02(8)
O(1)#1.Gd(1).N(2)#1	63 74(7)
$O(1)_G d(1)_N(2) = 1$	74 44(6)
O(1) #2 Gd(1) N(2) #1	139.06(7)
$O(2) \pm 1 O((1) N(2) \pm 1$	63 50(6)
O(2)#1 $O((1)$ $N(2)$ #1 O(2)#2 $O(1)$ $N(2)$ #1	70 25(7)
O(2) = 2 + O((1) + N(2) + 1 O(2) = O(1) + N(2) + 1	127 74(7)
O(2) + O(1) + N(2) = 1	131.10(1)
$O(1) # 1 \cdot Od(1) \cdot N(2)$	139.00(7)
O(1)-Gd(1)-N(2)	63.74(7)
O(1)#2-Gd(1)-N(2)	(4.44(6)
O(2)#1-Gd(1)-N(2)	70.25(7)
O(2)#2-Gd(1)-N(2)	137.76(7)
O(2)-Gd(1)-N(2)	63.50(6)
N(2)#1-Gd(1)-N(2)	119.950(4)
O(1)#1-Gd(1)-N(2)#2	74.44(6)
O(1)-Gd(1)-N(2)#2	139.06(7)
O(1)#2-Gd(1)-N(2)#2	63.74(7)
O(2)#1-Gd(1)-N(2)#2	137.76(7)
O(2)#2-Gd(1)-N(2)#2	63.50(6)
O(2)-Gd(1)-N(2)#2	70.25(7)
N(2)#1-Gd(1)-N(2)#2	119.950(4)
N(2)-Gd(1)-N(2)#2	119.950(4)

Table S7. Selected Bond Lengths (Å) and Angles (deg) in Δ –[Gd((S,S)–1)₃]³⁺ (Standard Deviation in Parentheses).

Symmetry transformations used to generate equivalent atoms:

#1 y,z,x #2 z,x,y #3 -x,y,-z+1

N(2)-Tb(1)	2.5278(19)
O(1)-Tb(1)	2.3813(17)
O(2)-Tb(1)	2.3723(16)
Tb(1)-O(2)#1	2.3723(16)
Tb(1)-O(2)#2	2.3723(16)
$T_{b}(1) \cdot O(1) #2$	2.3813(17)
$T_{b}(1) = O(1) # 1$	2.3813(17)
Tb(1) = 0(1) = 1 Tb(1) = N(2) = 2	2.5015(17)
Tb(1)N(2)#1	2.5278(19)
$10(1)^{-1}(2)^{+1}$	2.5270(17)
C(14)-N(2)-Tb(1)	120.68(15)
C(10)-N(2)-Tb(1)	119.55(15)
C(15)-O(1)-Tb(1)	126.07(16)
C(9)-O(2)-Tb(1)	125.37(16)
O(2)#1-Tb(1)- $O(2)$ #2	80.88(7)
O(2)#1-Tb(1)- $O(2)$	80.88(7)
O(2)#2.Tb(1).O(2)	80,88(7)
O(2) # 1.Tb(1).O(1) # ?	82,87(6)
O(2)#2.Tb(1).O(1)#2	12.7 54(6)
O(2), Tb(1), O(1)#2	144 14(6)
O(2) # 1.Tb(1).O(1)	144 14(6)
O(2) # 2.Tb(1) O(1)	82 87(6)
$O(2)_{Tb}(1)_O(1)$	127 54(6)
$O(1) = 2 \cdot 1 \cdot O(1) \cdot O(1)$	87 12(7)
$O(1)^{\#2^{*}1}O(1)^{*}O(1)$	12754(6)
O(2) = 1 - 1 O(1) - O(1) = 1 O(2) = 2 - T + (1) O(1) = 1	127.34(0) 144.14(6)
$O(2) = 2^{-1} O(1)^{-0} O(1) = 1$ $O(2) = T_{0}(1) O(1) = 1$	177.14(0) 82.87(6)
O(2)=10(1)=O(1)=1 O(1)=2 TL(1) $O(1)=1$	02.07(0) 87 17(7)
O(1) = 2 - 1 D(1) + O(1) = 1 $O(1) = T_{1}(1) + O(1) = 1$	02.12(1) 92.12(7)
O(1) + 1 + O(1) + O(1) + 1 O(2) + 1 + T + (1) + (2) + 2	02.12(1) 74.16(6)
O(2)#1-1 $D(1)$ - $N(2)$ #2 O(2)#2 T (1) $N(2)$ #2	(4.10(0)
O(2)#2-1b(1)-N(2)#2	64.04(6)
O(2)-1 b(1)-N(2)#2	139.35(6)
O(1)#2-Tb(1)-N(2)#2	63.56(6)
O(1)-Tb(1)-N(2)#2	69.99(6)
O(1)#1-Tb(1)-N(2)#2	137.74(7)
O(2)#1-Tb(1)-N(2)#1	64.04(6)
O(2)#2-Tb(1)-N(2)#1	139.35(6)
O(2)-Tb(1)-N(2)#1	74.16(6)
O(1)#2-Tb(1)-N(2)#1	69.99(6)
O(1)-Tb(1)-N(2)#1	137.74(7)
O(1)#1-Tb(1)-N(2)#1	63.56(6)
N(2)#2-Tb(1)-N(2)#1	119.942(4)
O(2)#1-Tb(1)-N(2)	139.35(6)
O(2)#2-Tb(1)-N(2)	74.16(6)
O(2)-Tb(1)-N(2)	64.04(6)
O(1)#2-Tb(1)-N(2)	137.74(7)
O(1)-Tb(1)-N(2)	63.56(6)
O(1)#1.Tb(1).N(2)	69,99(6)
N(2)#2.Tb(1).N(2)	119 947(4)
N(2) # 1.Tb(1).N(2)	119 947(4)
1 1 (2) // 1 / 1 // 1 // 1 1 // 2)	11/1/14(1)

Table S8. Selected Bond Lengths (Å) and Angles (deg) in $\Lambda - [Tb((R,R)-1)_3]^{3+}$ (Standard Deviation in Parentheses).

Symmetry transformations used to generate equivalent atoms:

#1 y,z,x #2 z,x,y #3 -x+2,y,-z+1

N(2)-Tb(1)	2.528(2)
O(1)-Tb(1)	2.3657(16)
O(2)-Tb(1)	2.3817(17)
Tb(1)-O(1)#1	2.3657(16)
Tb(1)-O(1)#2	2.3657(16)
$T_{b}(1)-O(2)#1$	2.3817(17)
$T_{b}(1) \cdot O(2) \# 2$	2.3817(17)
Tb(1) N(2) #1	2.5011(11)
Tb(1) N(2) # 2	2.528(2)
$10(1)^{1}(2)^{\pi}2$	2.520(2)
C(14)-N(2)-Tb(1)	120.39(16)
C(10)-N(2)-Tb(1)	119 57(16)
C(9)O(1)Tb(1)	125 44(16)
C(15) O(2) Tb(1)	125.7(10) 125.96(16)
$O(1) T_{b}(1) O(1) #1$	80.81(7)
O(1) Tb(1) O(1) #1 O(1) Tb(1) O(1) #2	80.81(7)
O(1)=1D(1)=O(1)=2 O(1)=1T(1)O(1)=2	00.01(7)
O(1) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	00.01(7)
O(1) = 1 = b(1) = O(2) = 1	144.21(6)
O(1)#1-1 $b(1)$ - $O(2)$ #1	127.50(6)
O(1)#2-1b(1)-O(2)#1	82.91(6)
O(1)-1b(1)-O(2)	127.50(6)
O(1)#1-1b(1)-O(2)	82.91(6)
O(1)#2-Tb(1)-O(2)	144.21(6)
O(2)#1-Tb(1)-O(2)	82.13(7)
O(1)-Tb(1)-O(2)#2	82.91(6)
O(1)#1-Tb(1)-O(2)#2	144.21(6)
O(1)#2-Tb(1)-O(2)#2	127.50(6)
O(2)#1-Tb(1)-O(2)#2	82.13(7)
O(2)-Tb(1)-O(2)#2	82.13(7)
O(1)-Tb(1)-N(2)	63.95(6)
O(1)#1-Tb(1)-N(2)	74.11(6)
O(1)#2-Tb(1)-N(2)	139.17(7)
O(2)#1-Tb(1)-N(2)	137.87(7)
O(2)-Tb(1)-N(2)	63.62(6)
O(2)#2-Tb(1)-N(2)	70.11(7)
O(1)-Tb(1)-N(2)#1	139.17(7)
O(1)#1-Tb(1)-N(2)#1	63.95(6)
O(1)#2.Tb(1).N(2)#1	74,11(6)
O(2)#1.Tb(1).N(2)#1	63.62(6)
O(2), Th(1), N(2)#1	70 11(7)
O(2) # 2 Tb(1) N(2) # 1	137 87(7)
$N(2) = L^{-1} N(2) = 1$ N(2) $= L(1) N(2) = 1$	110052(A)
$O(1) T_{1}(1) N(2) + 1$	74.11(6)
O(1) + 1 O(1) + N(2) + 2 O(1) + 1 T + (1) N(2) + 2	120 17(7)
O(1)#1-1 $D(1)$ - $N(2)$ #2 O(1)#2 $TL(1)$ $N(2)$ #2	139.1((1)
O(1)#2-1b(1)-N(2)#2	03.95(0)
O(2)#1-1b(1)-N(2)#2	(0.11(7)
O(2) + 1b(1) + N(2) + 2	137.87(7)
O(2)#2-1b(1)-N(2)#2	63.62(6)
N(2)-Tb(1)-N(2)#2	119.952(4)
N(2)#1-Tb(1)-N(2)#2	119.952(4)

Table S9. Selected Bond Lengths (Å) and Angles (deg) in $\Delta - [Tb((S,S)-1)_3]^{3+}$ (Standard Deviation in Parentheses).

Symmetry transformations used to generate equivalent atoms:#1 -y+1,z,-x+1#2 -z+1,-x+1,y#3 -x+1,-y,z

N(2)-Yb(1)	2.469(2)
O(1)-Yb(1)	2.3205(15)
O(2)-Yb(1)	2.3310(17)
Yb(1)-O(1)#1	2.3205(15)
Yb(1)-O(1)#2	2.3205(15)
Yb(1)-O(2)#1	2.3310(17)
$Y_{b}(1)-O(2)=2$	2.3310(17)
$Y_{b}(1)-N(2)#1$	2.469(2)
$Y_{b}(1) N(2) #2$	2.469(2)
1.0(1)1(2).2	2.107(2)
C(10)-N(2)-Yb(1)	120.08(16)
C(14)-N(2)-Yb(1)	120.52(15)
C(9)-O(1)-Yb(1)	124.93(15)
C(15)-O(2)-Yb(1)	125.51(16)
O(1) # 1.Yb(1) O(1)	79.98(6)
O(1) = 1 O(1) - O(1) = 2	79.98(6)
$O(1) \times V(1) O(1) + 2$	70.08(6)
O(1)=1D(1)=O(1)=2 O(1)=1D(1)=O(1)=2	(9.90(0) 94.05(6)
O(1) + 1 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0	120.08(6)
O(1)=1D(1)=O(2)	129.90(0)
O(1)#2-1 $D(1)$ - $O(2)$	142.00(5)
O(1)#1-1 $D(1)$ - $O(2)$ #1	129.98(0)
O(1)-Y $D(1)$ - $O(2)$ #1 O(1) = 2 V (1) $O(2)$ = 1	142.66(5)
O(1)#2-Y $D(1)$ - $O(2)$ #1	84.05(6)
O(2)-Yb(1)- $O(2)$ #1	80.80(7)
O(1)#1-Yb(1)- $O(2)$ #2	142.66(5)
O(1)-Yb(1)-O(2)#2	84.05(6)
O(1)#2-Yb(1)-O(2)#2	129.98(6)
O(2)-Yb(1)-O(2)#2	80.80(7)
O(2)#1-Yb(1)-O(2)#2	80.80(7)
O(1)#1-Yb(1)-N(2)#1	65.16(6)
O(1)-Yb(1)-N(2)#1	138.53(6)
O(1)#2-Yb(1)-N(2)#1	72.71(6)
O(2)-Yb(1)-N(2)#1	69.95(6)
O(2)#1-Yb(1)-N(2)#1	64.85(6)
O(2)#2-Yb(1)-N(2)#1	137.41(7)
O(1)#1-Yb(1)-N(2)	72.71(6)
O(1)-Yb(1)-N(2)	65.16(6)
O(1)#2-Yb(1)-N(2)	138.53(6)
O(2)-Yb(1)-N(2)	64.85(6)
O(2)#1-Yb(1)-N(2)	137.41(7)
O(2)#2-Yb(1)-N(2)	69.95(6)
N(2)#1-Yb(1)-N(2)	119,975(3)
O(1)#1.Yb(1).N(2)#2	138 53(6)
O(1).Yb(1).N(2)#2	72,71(6)
O(1) # 2 Y h(1) N(2) # 2	65 16(6)
$O(1)^{\#2^{-1}}O(1)^{1}(2)^{\#2}$ $O(2) Vb(1) N(2)^{\#2}$	137 41(7)
O(2) + 1 O(1) + N(2) + 2 O(2) + 1 VL(1) N(2) + 2	60.05(6)
O(2) = 1 - 1 D(1) - 1 N(2) = 2 O(2) = 2 VL(1) N(2) = 2	64.95(0)
$\bigcup_{L} \# L \cdot I \bigcup_{L} I / I (L) \# L$ $\bigcup_{L} (2) \# 1 / \bigcup_{L} (1) / \bigcup_{L} (2) \# 2$	110.075(2)
IN(2) # I - I D(1) - IN(2) # 2 N(2) VL(1) N(2) # 2	117.7(3(3)) 110.075(3)
N(2) = I D(1) - IN(2) = 2 O(1) = 1 V U(1) O(0) = 1	19.9(3)
O(1)#1-1 $D(1)$ - $O(9)$ #1 O(1) XL(1) $O(0)$ #1	10.02(0)
O(1)-Yb(1)- $O(9)$ #1	97.83(6)
O(1)#2-Yb(1)-C(9)#1	77.91(6)
U(2)-Yb(1)-C(9)#1	(6.34(6)

Table S10. Selected Bond Lengths (Å) and Angles (deg) in Δ -[Yb((S,S)-1)₃]³⁺ (Standard Deviation in Parentheses).

O(2)#1-Yb(1)-C(9)#1	111.52(6)
O(2)#2-Yb(1)-C(9)#1	151.57(6)
N(2)#1-Yb(1)-C(9)#1	46.68(6)
N(2)-Yb(1)-C(9)#1	85.03(6)
N(2)#2-Yb(1)-C(9)#1	142.85(6)
O(1)#1-Yb(1)-C(9)#2	97.83(6)
O(1)-Yb(1)-C(9)#2	77.91(6)
O(1)#2-Yb(1)-C(9)#2	18.62(6)
O(2)-Yb(1)-C(9)#2	151.57(6)
O(2)#1-Yb(1)-C(9)#2	76.34(6)
O(2)#2-Yb(1)-C(9)#2	111.52(6)
N(2)#1-Yb(1)-C(9)#2	85.03(6)
N(2)-Yb(1)-C(9)#2	142.85(6)
N(2)#2-Yb(1)-C(9)#2	46.68(6)
C(9)#1-Yb(1)-C(9)#2	96.52(6)
O(1)#1-Yb(1)-C(9)	77.91(6)
O(1)-Yb(1)-C(9)	18.62(6)
O(1)#2-Yb(1)-C(9)	97.83(6)
O(2)-Yb(1)-C(9)	111.52(6)
O(2)#1-Yb(1)-C(9)	151.57(6)
O(2)#2-Yb(1)-C(9)	76.34(6)
N(2)#1-Yb(1)-C(9)	142.85(6)
N(2)-Yb(1)-C(9)	46.68(6)
N(2)#2-Yb(1)-C(9)	85.03(6)
C(9)#1-Yb(1)-C(9)	96.52(6)
C(9)#2-Yb(1)-C(9)	96.52(6)

Symmetry transformations used to generate equivalent atoms: #1-y+1,z,x+1 #2-z+1,x+1,y #3 x,y,-z+1

Table S11. Selected least-squares planes data (standard deviations are indicated within parentheses) and interplanar angles (deg) in $[LnL_3]^{3+}$ (Ln(III) = Eu, Yb and L = (R,R)-1 and (S,S)-1).

	Nr	Description	Deviation Max.	Atom	Interplanar Angles (deg)	
			(Å)		1-2	2-3
	1	N1-O1-C9-C10	0.0093(26)	С9		7.35(0.16)
$[Eu((R,R)-1)_3]^{3+}$	2	N2-C10-C11-C12-C13-C14	-0.0055(26)	C12	5.86(0.12)	
	3	N3-O2-C15-C14	0.0009(29)	C15		
[Eu((S,S)-1) ₃] ³⁺	1	N1-O1-C9-C10	0.0047(27)	С9		7.79(0.16)
	2	N2-C10-C11-C12-C13-C14	-0.0116(28)	C12	4.24(0.14)	
	3	N3-O2-C15-C14	-O2-C15-C14 -0.0033(29) C1			
$[Yb((R,R)-1)_3]^{3+}$	1	N1-O1-C9-C10	0.0053(24)	C9		
	2	N2-C10-C11-C12-C13-C14	-0.0072(20)	C14	4.16(0.12)	6.75(0.14)
	3	N3-O2-C15-C14	-0.0037(24)	C15		
[Yb((S,S)-1) ₃] ³⁺	1	N1-O1-C9-C10	0.0080(19)	С9		
	2	N2-C10-C11-C12-C13-C14	0.0137(19)	C11	3.88(0.10)	7.31(0.12)
	3	N3-O2-C15-C14	-0.0067(21)	C15		

Figure S9. Structure of the $\Lambda - [Gd((R,R)-1)_3]^{3+}$ (top) and $\Delta - [Gd((S,S)-1)_3]^{3+}$ (bottom) cations.

Figure S10. Structure of the Λ -[Tb((R,R)-1)₃]³⁺ (top) and Δ -[Tb((S,S)-1)₃]³⁺ (bottom) cations.

Figure S11. Normalized electronic spectra of **L** (black trace, 5.4×10^{-5} M) and $[LnL_3]^{3+}$ (Ln(III) = Eu, Gd, Tb, and Er) complexes (blue, red, cyan, and green traces, respectively, $2.8-4.5 \times 10^{-4}$ M) in anhydrous MeCN at 298 K.

Luminescence Sensitization Determination

The luminescence sensitization (η_{sens}) value was determined for the Eu(III) complex using the following equation¹:

$$Q_{\text{tot}}^{\text{Eu}} = \eta_{\text{ISC}} \cdot \eta_{\text{ET}} \cdot Q^{\text{Eu}} = \eta_{\text{sens}} \cdot Q^{\text{Eu}}$$

where $Q^{E_{u}}_{tot}$ is the europium–centered luminescence quantum yield obtained upon ligand excitation (1.0%), $Q^{E_{u}}$ the intrinsic luminescence quantum yield of the Eu(III) ion, η_{sens} the efficiency of the luminescence sensitization by the ligand, η_{ISC} the efficiency of the intersystem crossing process from the ligand singlet to triplet state, and η_{ET} the efficiency of the ligand–to–metal energy transfer. The intrinsic quantum yield $Q^{E_{u}}$ is defined as the ratio between the observed and radiative lifetimes of the Eu(⁵D₀) level:

$$Q^{Eu} = \tau_{obs/} \tau_R$$

where the radiative lifetime τ_R can be estimated from:

$$\tau_{\rm R} = \frac{1}{A_{\rm MD,0} \cdot n^3} \cdot \left(\frac{I_{\rm MD}}{I_{\rm tot}}\right)$$

 $A_{MD,0}$ is the spontaneous emission probability of the Eu(${}^{5}D_{0} \rightarrow {}^{7}F_{1}$) transition (14.65 s⁻¹), *n* is the refractive index (1.354 for the MeCN solution) and I_{MD}/I_{tot} is the intensity ratio of the Eu(${}^{5}D_{0} \rightarrow {}^{7}F_{1}$) transition to the total emission of the ${}^{5}D_{0}$ level. For [EuL₃]³⁺ with L = (*R*,*R*)-1 or (*S*,*S*)-1, I_{MD}/I_{tot} = 0.24, leading to τ_{R} = 6.6 × 10³ ms, Q^{Eu} = 265.2 (τ_{obs} = 1.75 ms) and η_{sens} = 4.0 × 10⁻⁵. As a comparison, η_{sens} values of 0.03 (Q^{Eu}_{L} = 1.4%), 7.0 × 10⁻⁴ (Q^{Eu}_{L} = 0.01%), and in the range of 0.01–0.02 ($Q^{Eu}_{L} \sim 1\%$) have been obtained for Eu(III) 1:1 and 1:2 complexes with the chiral ligand 2,6–bis(1–S–neopentylbenzimidazol–2–yl)pyridine,² and for Eu(III) 1:1 complexes with nitrobenzoic acid ligand derivatives,³ respectively.

References

- (1) Wertz, M. H. V.; Jukes, R. T. F.; Verhoeven, J. W. Phys. Chem. 1985, 89, 5649-5654
- Muller, G.; Maupin, C. L.; Riehl, J. P.; Birkedal, H.; Piguet, C.; Bünzli, J.–C. G. Eur. J.
 Inorg. Chem. 2003, 4065–4072
- (3) de Bettencourt-Dias, A.; Viswanathan, S Dalton Trans., 2006, 4093-4103