Supplemental FIGURE S3. Distribution of hexoses on AGP31 P2 O-glycopeptides using ETD MS/MS.

For simplification, Hyp residues (O) of the P2 peptide were located according to our experimental results and literature data. Fragmentation was carried out on the P2 *O*-glycopeptide containing 2 hexoses obtained following gel excision of an AGP31 enriched fraction in the 50-60 kDa mass range (see Figs. 2, 3A and 4). Sites of *O*-glycosylation were identified from c and z series of differentially glycosylated fragment ions. The number of hexose residues (\triangleq) found on each fragment is indicated by stars (*). Fragmentation pattern showed that different glycoforms exist with possible sites of *O*-glycosylation on Hyp131/151, Hyp135/155, Hyp139/159 and Hyp143/163 of the AGP31 Pro-rich domain. Peaks corresponding to the loss of one hexose and one hydroxyl moiety were found (∇). Parent ion fragmented is labeled with \diamond .

For simplification, Hyp residues (O) of the P2 peptide were located according to our experimental results and literature data. Fragmentation was carried out on the P2 *O*-glycopeptide containing 3 hexoses obtained following gel excision of an AGP31 enriched fraction in the 50-60 kDa mass range (see Figs. 2, 3A and 4). Sites of *O*-glycosylation were identified from c and z series of differentially glycosylated fragment ions. The number of hexose residues () found on each fragment is indicated by stars (*). Fragmentation pattern showed that different glycoforms exist with possible sites of *O*-glycosylation on Hyp131/151, Hyp135/155, Hyp139/159, Hyp143/163 and Hyp147/167 of the AGP31 Pro-rich domain. Peaks corresponding to the loss of one hexose and one hydroxyl moiety were found (\bigtriangledown). Parent ion fragmented is labeled with \diamondsuit .

Figure S3C. ETD MS/MS analysis of the P2 glycopeptide containing 4 hexoses (717.6 [M+4H]⁴⁺).

For simplification, Hyp residues (O) of the P2 peptide were located according to our experimental results and literature data. Fragmentation was carried out on the P2 *O*-glycopeptide containing 4 hexoses obtained following gel excision of an AGP31 enriched fraction in the 50-60 kDa mass range (see Figs. 2, 3A and 4). Sites of *O*-glycosylation were identified from c and z series of differentially glycosylated fragment ions. The number of hexose residues (\triangleq) found on each fragment is indicated by stars (*). Fragmentation pattern showed that different glycoforms exist with possible sites of *O*-glycosylation on Hyp131/151, Hyp135/155, Hyp139/159, Hyp143/163 and Hyp147/167 of the AGP31 Pro-rich domain. Peaks corresponding to the loss of one hexose and one hydroxyl moiety were found (\bigtriangledown). Parent ion fragmented is labeled with \blacklozenge .

For simplification, Hyp residues (O) of the P2 peptide were located according to our experimental results and literature data. Fragmentation was carried out on the P2 *O*-glycopeptide containing 5 hexoses obtained following gel excision of an AGP31 enriched fraction in the 50-60 kDa mass range (see Figs. 2, 3A and 4). Sites of *O*-glycosylation were identified from c and z series of glycosylated fragment ions. The number of hexose residues (\blacksquare) found on each fragment is indicated by stars (*). Fragmentation pattern showed that each Hyp residue of the P2 peptide of the AGP31 Pro-rich domain carries only one hexose. Peaks corresponding to the loss of one hexose and one hydroxyl moiety were found (\bigtriangledown). Parent ion fragmented is labeled with \blacklozenge .

Figure S3E. Number of hexose residues found on c and z fragment ions obtained by ETD MS/MS of the P2 *O*-glycopeptide containing 2, 3, 4 or 5 hexoses.

Fragmentations were carried out on P2 *O*-glycopeptides obtained following gel excision of an AGP31 enriched fraction in the 50-60 kDa mass range (see Figs. 2, 3A and 4). For simplification. Hyp residues (Ω) of the P2 peptide were located according to our experimental

simplification, Hyp residues (O) of the P2 peptide were located according to our experimental results and literature data.

	c series				z / z+1 series			
	3	7	11	15	5	9	13	17
P2 + 2 hexoses	0 1	- 1 2	- 1 2	- - 2	0 -	- 1	- 1	- - 2
P2 + 3 hexoses	0 1 -	- 2 -	- 2 -	- 2 -	0 1 -	- 1 -	- 1 2 -	- - 2 3
P2 + 4 hexoses	- 1 - -	- 2		- - - - 4	0 1 - -	- 1 - -	- 2 3 -	- - 3 -
P2 + 5 hexoses	- 1 - -	- 2	- - 3 -	- - - 4 -	- 1 - -	- 2	- - 3 -	- - - 4 -