APPENDIX

<u>Hypothesis</u>: k_1 , k_1 ', k_3 , and k_3 ' are pH-independent.

At (a) constant pH_{cyt} 7.5 the K_M value increases upon a change from pH_{vac} 7.5 to pH_{vac} 5.5 whereas at (b) constant pH_{cvt} 5.5 it drops.

(a)
$$K_M^{7.5 cyt/7.5 vac} < K_M^{7.5 cyt/5.5 vac}$$

$$\Rightarrow \frac{k_1'k_3 + k_3(k_1 \cdot 10^{-7.5})^{c1} + k_1'(k_3' \cdot 10^{-7.5})^{c1}}{k_3 + (k_1 \cdot 10^{-7.5})^{c1} + (k_3' \cdot 10^{-7.5})^{c1}} < \frac{k_1'k_3 + k_3(k_1 \cdot 10^{-7.5})^{c2} + k_1'(k_3' \cdot 10^{-5.5})^{c2}}{k_3 + (k_1 \cdot 10^{-7.5})^{c2} + (k_3' \cdot 10^{-5.5})^{c2}}$$

$$\Rightarrow k_1'k_3(k_1 \cdot 10^{-7.5})^{c2} + (k_3)^2(k_1 \cdot 10^{-7.5})^{c1} + k_3(k_1 \cdot 10^{-7.5})^{c1}(k_3' \cdot 10^{-5.5})^{c2} + k_1'(k_3' \cdot 10^{-7.5})^{c1}(k_1 \cdot 10^{-7.5})^{c2} < k_1'k_3(k_1 \cdot 10^{-7.5})^{c1} + (k_3)^2(k_1 \cdot 10^{-7.5})^{c2} + k_3(k_1 \cdot 10^{-7.5})^{c2}(k_3' \cdot 10^{-7.5})^{c1} + k_1'(k_3' \cdot 10^{-5.5})^{c2}(k_1 \cdot 10^{-7.5})^{c1}$$

$$\Rightarrow \left(k_{3} - k_{1}^{'}\right) \left[k_{3} \left(k_{1} \cdot 10^{-7.5}\right)^{c1} - k_{3} \left(k_{1} \cdot 10^{-7.5}\right)^{c2} + \left(k_{1} \cdot 10^{-7.5}\right)^{c1} \left(k_{3}^{'} \cdot 10^{-5.5}\right)^{c2} - \left(k_{1} \cdot 10^{-7.5}\right)^{c2} \left(k_{3}^{'} \cdot 10^{-7.5}\right)^{c1}\right] < 0$$

$$\Rightarrow \left(k_{3} - k_{1}^{'}\right) \left(k_{1} \cdot 10^{-7.5}\right)^{c1} \cdot \left[k_{3} \left(1 - \frac{\left(k_{1} \cdot 10^{-7.5}\right)^{c2}}{\left(k_{1} \cdot 10^{-7.5}\right)^{c1}}\right) + \left(k_{3}^{'} \cdot 10^{-5.5}\right)^{c2} \left(1 - \frac{\left(k_{1} \cdot 10^{-7.5}\right)^{c2}}{\left(k_{1} \cdot 10^{-7.5}\right)^{c1}} \frac{\left(k_{3}^{'} \cdot 10^{-7.5}\right)^{c1}}{\left(k_{3}^{'} \cdot 10^{-5.5}\right)^{c2}}\right)\right] < 0$$

$$\Rightarrow \left(k_{3} - k_{1}^{'}\right) \left(k_{1} \cdot 10^{-7.5}\right)^{c1} \cdot \left[k_{3} \left(1 - \left(k_{1} \cdot 10^{-7.5}\right)^{-(c1-c2)}\right) + \left(k_{3}^{'} \cdot 10^{-5.5}\right)^{c2} \left(1 - \frac{1}{100^{c2}} \left(\frac{k_{3}^{'}}{k_{1}}\right)^{(c1-c2)}\right)\right] < 0 \quad (Eq. A1)$$

Similarly, it follows for (b) $K_M^{5.5cyt/7.5vac} > K_M^{5.5cyt/5.5vac}$

$$\Rightarrow \left(k_{3} - k_{1}^{'}\right) \left(k_{1} \cdot 10^{-5.5}\right)^{c1} \cdot \left[k_{3} \left(1 - \left(k_{1} \cdot 10^{-5.5}\right)^{-(c1-c2)}\right) + \left(k_{3}^{'} \cdot 10^{-5.5}\right)^{c2} \left(1 - \frac{1}{100^{c1}} \left(\frac{k_{3}^{'}}{k_{1}}\right)^{(c1-c2)}\right)\right] > 0 \quad (Eq. A2)$$

Our experiments show that c1 > c2. The pump cycle has a preference for pumping from the cytosol into the vacuolar lumen. Therefore, $k'_3 < k_1$ is a reasonable estimation. Consequently, it holds for the terms in square brackets in Eqs. A1 and A2: [...] > 0. Thus, the equations can only be fulfilled if

(a)
$$k'_1 > k_3$$

(b) $k'_1 < k_3$

(b)
$$k_1^{-} < k_2^{-}$$

This, however, is a contradiction to the assumption that all four rate-constants are pH-independent.

<u>Conclusion</u>: The hypothesis is wrong. Thus, at least one of the constants k_1 , k_1 ', k_3 , and/or k_3 ' must be pH-dependent. For instance, k_1 ' may decrease upon a drop of pH_{cyt} (and/or k_1 increases) while k_3 increases upon an increase of pH_{vac} (and/or k_3 ' decreases). This would mean that an increasing proton

concentration would favor the binding of protons to the protein and full dissociation might not b achieved in each pump cycle.	e