Supplemental Data

The vital role of pol ζ and REV1 in mutagenic, but not correct, DNA synthesis across benzo[*a*]pyrene-dG and the recruitment of pol ζ by REV1 to a replication-stalled site

Keiji Hashimoto, Youngjin Cho, In-Young Yang, Jun-ichi Akagi, Eiji Ohashi, Satoshi Tateishi, Niels de Wind, Fumio Hanaoka, Haruo Ohmori, and Masaaki Moriya

Table of Contents

Supplemental Tables

Table S1 – Page S-2 Table S2 – Page S-2

Supplemental Figures

Figure S1 – Page S-3 Figure S2 – Page S-4 Figure S3 – Page S-5 Figure S4 – Page S-6 Figure S5 – Page S-7

Supplemental References

Page S-8

Supplemental Tables

	MEFs		Total No. and % of coding events detected					d
DNA lesion		TLS	effective					
		efficiency ^a	no.	G*→T	G* → A	G* → G	G* → C	Others
			sequenced					
BPDE -dG (G*)	Wild-type	1.68	86	63	10	8	1	4
		(100%)	100%	73%	12%	9%	1%	5%
	Polk ^{-/-} Polh ^{-/-}	1.31	95	65	14	11	1	4
	<i>Poli</i> ^{-/-} (2091)	(78%)	100%	68%	15%	12%	1%	4%
	Polk ^{-/-} Poli ^{-/-}	1.01	95	51	21	14	4	5
		(60%)	100% ^b	54% ^c	22%	15%	4%	5%
	Polh ^{-/-} Poli ^{-/-}	1.03	94	41	23	14	9	7
		(61%)	100% ^b	44% ^c	24% ^c	15%	10% ^c	7%
				C* → T	C* → A	C* → G	C*→C	Others
H-ɛdC (C*)	Wild-type	0.802	90	54	33	2	1	0
		(100%)	100%	60%	37%	2%	1%	0%
	Polk ^{-/-} Polh ^{-/-}	0.165	94	56	35	3	0	0
	<i>Poli</i> ^{-/-} (2091)	(21%)	100%	60%	37%	3%	0%	0%

Table S1. TLS events for BPDE-dG and H-ɛdC in double and triple-gene knockout MEFs

Colors used in coding events correspond to those used in Fig. 2.

^a Number of ampicillin/blasticidin-resistant transformants divided by that of kanamycin-resistant (internal control) transformants.

^b The distribution of coding events are statistically significant at p < 0.001 when compared with that in wild-type cells. Highlighted with a grey background. p < 0.001 when compared with the corresponding event in wild-type cells. Highlighted with a grey

background.

Table S2. TLS	events for	BPDE-dG in	n single-gene	knockout MEFs
---------------	------------	-------------------	---------------	---------------

DNA	MEE	TLS	Total effective	No. and % of coding events detected				
lesion	MEFS	efficiency ^a	no. sequenced	G* → T	G* → A	G* → G	G* → C	Others
BPDE- dG (G*)	Wild-type	5.72	92	68	14	6	1	3
		(100%)	100%	74%	15%	7%	1%	3%
	<i>Rev1</i> ^{-/-}	2.34	88	28	16	42	1	1
		(41%)	100% ^b	32% ^c	18%	48% ^c	1%	1%
	Rev3L ^{-/-}	0.76	94	6	0	88	0	0
		(13%)	100% ^b	6% ^c	0% ^{##}	94% ^c	0%	0%
	Rad18 ^{-/-}	1.50	191	108	15	55	3	10
		(26%)	100% ^b	57% ^c	8%	29% ^c	2%	5%

Refer to the legend to Table S1.

Supplemental Figures

Figure S1. Genotyping of triple- and double-gene knockout MEFs by genomic PCR. PCR was performed at 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1 min with 45 cycles using following primer sets. **A** and **B** (*Polh*), the wild-type, but not the mutant, *Polh* allele produced a 1.9-kb fragment with a primer set of 5'TTTCGATCTTTGGTTAGCCTCTCC and 5'GTAGTCTGGGGGGGTTGAATC (**A**). The mutant, but not the wild-type, *Polh* allele, produced a 1.4-kb fragment with a primer set of 5'GTAGTCTGGGGGGGTTGAATC and 5'GTCTGTTGTGCCCAGTCATAGC (**B**). Refer to ref. S1. **C** (*Polk*), the wild-type, but not the mutant, *Polk* allele produced a 300-bp fragment with a primer set of 5'GTGAGACCAAACCTTGACAGGCTAAG. **D** (*Poli*), the wild-type and mutant *Poli* alleles produced 49- plus 39-bp fragments and a 88-bp fragment, respectively, following Taq^aI digestion of PCR products amplified with a primer set of 5'-CAGTTTGCAGTCAAGGGCC and 5'-TCGACCTGGGCATAAAAGC. Refer to ref. S2. Two independent lines (91, TKO line #2091 and 95, TKO line #2095) of triple-gene knockout (*k/h/i*) MEFs were examined. "wt" represents a wild-type MEF. Size markers (M) are 1-kb ladder for **A** and **B**, 100-bp ladder for **C**, and 25-bp ladder for **D**. Diagnostic fragments are indicated by white arrows.

Figure S2. Clonogenic UV sensitivity assay of various Y-family polymerase-defective MEFs. Four hundred cells were seeded in a 10-cm plate and irradiated with UV-C. Cells were cultured for 10-14 days, after which colonies were counted with crystal violet staining. Dark blue, wild-type; light blue, *Polk^{-/-}* green, *Polk^{-/-}* Poli^{-/-}; pink, *Polh^{-/-}*; orange, *Polk^{-/-}* Poli^{-/-} (#2091); red, *Polk^{-/-}* Polh^{-/-} Poli^{-/-} (#2095).

Figure S3. Examples of colony hybridization with oligonucleotide probes. Refer to Fig. 1 for the locations and sequences of oligonucleotide probes used. Colonies showing positive hybridization signals for both L and R probes are considered to be derived from TLS. *E. coli* transformants that did not hybridized with L or R probe were excluded from analysis. Probes T and C detect BPDE-dG \rightarrow T and BPDE-dG \rightarrow C transversions, respectively.

Probe R

Probe C

Figure S4. Immunoblot analysis of $Rev1^{-/-}$ **mouse embryonic fibroblasts complemented with hREV1.** Human REV1 (1251 amino acids) and its C-terminal deletion mutant (1-1140 amino acids) tagged with 3×FLAG (140 and 128 kDa, respectively) were expressed in $Rev1^{-/-}$ mouse cells. Anti-FLAG monoclonal antibody (M2, Sigma) was used to detect tagged hREV1. lane 1, protein marker; lane 2, $Rev1^{-/-}$ cells; lane 3, $Rev1^{-/-}$ cells complemented with hREV1 (1-1140); lane 4, $Rev1^{-/-}$ cells complemented with hREV1 (1-1251).

Figure S5. Sensitivity of $Rev1^{-/-}$ mouse embryonic fibroblasts complemented with hREV1 or Cterminal truncated hREV1 to 4-nitroquinoline-*N*-oxide (4NQO). Cells were treated with 0.25, 0.5, and 1 μ M 4NQO for 1 h, after which the treatment medium was replaced with a fresh medium. Cells were cultured for 2 days, and the number of viable cells was determined by the Cell Titer 96 AQueous One Solution Cell Proliferation Assay (Promega). open circle, hREV1(1-1251); closed triangle, hREV1 C-terminal deletion mutant (1-1140); closed circle, $Rev1^{-/-}$ cells.

Supplemental References

- S1. Ohkumo, T., Kondo, Y., Yokoi, M., Tsukamoto, T., Yamada, A., Sugimoto, T., Kanao, R., Higashi, Y., Kondoh, H., Tatematsu, M., Masutani, C., and Hanaoka, F. (2006) *Mol. Cell. Biol.* 26, 7696-7706
- S2. McDonald, J.P., Frank, E.G., Plosky, B.S., Rogozin, I.B., Masutani, C., Hanaoka, F., Woodgate, R., and Gearhart, P.J. (2003) *J. Exp. Med.* **198**, 635-643