SUPPLEMENTAL MATERIAL

INSIGHTS INTO THE STRUCTURAL NETWORK RESPONSIBLE FOR OLIGOMERIZATION AND ACTIVITY OF THE BACTERIAL VIRULENCE REGULATOR CLPP*

Malte Gersch^{1,2,#,‡}, Anja List^{1,2,‡}, Michael Groll¹ and Stephan A. Sieber¹

¹ Center for Integrated Protein Science Munich (CIPS^M), Technische Universität München, Department of Chemistry, Lichtenbergstr. 4, 85747 Garching, Germany. ² These authors contributed equally to this work.

Supplementary Figures

Supplementary Figure 1: pH-profile of ClpP peptidase activity determined by the fluorescent substrate assay.

Supplementary Tables

Supplementary Table 1: Primers used in this study

#	Name	Sequence ^a
1	SaClpP-for-rbs	<i>GGGGACAAGTTTGTACAAAAAAGCAGGCTTT<u>GAAGGAGATAGAACC</u>ATGAATTTAATTCCTACAGTTATTGAAAC</i>
2	SaClpP-rev-Strep	GGGGACCACTTTGTACAAGAAAGCTGGGTGTTA TTTTCGAACTGCGGGTGGCTCCA TTTTGTTTCAGGTACCATCACTTC
3	Q35A-for	AGACCGTATTATTATGTTAGGTTCA <u>GC</u> AATTGATGACAACGTAGCAAATTCA
4	Q35A-rev	TGAATTTGCTACGTTGTCATCAATT <u>GC</u> TGAACCTAACATAATAATACGGTCT
5	S98A-for	ATTTGTATCGGTATGGCTGCA <u>G</u> CAATGGGATCATTCTTATTAG
6	S98A-rev	CTAATAAGAATGATCCCATTG <u>C</u> TGCAGCCATACCGATACAAAT
7	S98C-for	ACAATTTGTATCGGTATGGCTGCAT <u>GC</u> ATGGGATCATTCTTATTAGC
8	S98C-rev	GCTAATAAGAATGATCCCATGCAT <u>GC</u> AGCCATACCGATACAAATTGT
9	S98T-for	AATTTGTATCGGTATGGCTGCA <u>A</u> C <u>G</u> ATGGGATCATTCTTATTAGCAG
10	S98T-rev	CTGCTAATAAGAATGATCCCAT <u>C</u> G <u>T</u> TGCAGCCATACCGATACAAATT
11	G127AG128AG131A-for	GTAATGATTCACCAACCATTAG <u>C</u> TG <u>C</u> TGCTCAAG <u>C</u> ACAAGCAACTGAAATCGAAATTGCT
12	G127AG128AG131A-rev	AGCAATTTCGATTTCAGTTGCTTGT <u>G</u> CTTGAGCA <u>G</u> CA <u>G</u> CTAATGGTTGGTGAATCATTAC
13	Q130A-for	CACCAACCATTAGGTGGTGCT <u>GC</u> AGGACAAGCAACTG
14	Q130A-rev	CAGTTGCTTGTCCT <u>GC</u> AGCACCACCTAATGGTTGGTG
15	Q132A-for	CCAACCATTAGGTGGTGCTCAAGGA <u>GC</u> AGCAACTGAAATCG
16	Q132A-rev	CGATTTCAGTTGCT <u>GC</u> TCCTTGAGCACCACCTAATGGTTGG
17	E135A-for	GCTCAAGGACAAGCAACTG <u>C</u> AATCGAAATTGCTGCAAAT
18	E135A-rev	ATTTGCAGCAATTTCGATT <u>G</u> CAGTTGCTTGTCCTTGAGC
19	E135R-for	GGTGCTCAAGGACAAGCAACT <u>AG</u> AATCGAAATTGCTGCAAATCA
20	E135R-rev	TGATTTGCAGCAATTTCGATT <u>CT</u> AGTTGCTTGTCCTTGAGCACC
21	E137A-for	CAAGGACAAGCAACTGAAATCG <u>C</u> AATTGCTGCAAATCACATTTTA
22	E137A-rev	TAAAATGTGATTTGCAGCAATT <u>G</u> CGATTTCAGTTGCTTGTCCTTG
23	L144E-for	CAACTGAAATCGAAATTGCTGCAAATCACATT <u>GAG</u> AAAACACGTGAAAAATTAAACCGCATTTTATC
24	L144E-rev	GATAAAATGCGGTTTAATTTTTCACGTGTTTT <u>CTC</u> AATGTGATTTGCAGCAATTTCGATTTCAGTTG
25	L144G-for	GAAATCGAAATTGCTGCAAATCACATT <u>GG</u> AAAAACACGTGAAAAATTAAACCGCAT
26	L144G-rev	ATGCGGTTTAATTTTTCACGTGTTTTTT <u>CC</u> AATGTGATTTGCAGCAATTTCGATTTC
27	L144M-for	GAAATCGAAATTGCTGCAAATCACATT <u>A</u> T <u>G</u> AAAACACGTGAAAAATTAAACCGCATT
28	L144M-rev	AATGCGGTTTAATTTTTCACGTGTTTT C A <u>T</u> AATGTGATTTGCAGCAATTTCGATTTC
29	L144R-for	GAAATCGAAATTGCTGCAAATCACATT <u>AG</u> AAAAACACGTGAAAAATTAAACCGCAT
30	L144R-rev	ATGCGGTTTAATTTTTCACGTGTTTTTT <u>CT</u> AATGTGATTTGCAGCAATTTCGATTTC
31	D170A-for	TGAAAAAATACAAAAAGACACAG <u>C</u> TCGTGATAACTTCTTAACTGCAG
32	D170A-rev	CTGCAGTTAAGAAGTTATCACGA <u>G</u> CTGTGTCTTTTTGTATTTTTCA
33	R171A-for	GTATTGAAAAAATACAAAAAGACACAGAT <u>GC</u> TGATAACTTCTTAACTGCAGAAGA
34	R171A-rev	TCTTCTGCAGTTAAGAAGTTATCA <u>GC</u> ATCTGTGTCTTTTTGTATTTTTCAATAC
35	R171K-for	CAAAGTATTGAAAAAATACAAAAAGACACAGAT <u>AAG</u> GATAACTTCTTAACTGCAGAAGAAGCTAAAGAA
36	R171K-rev	TTCTTTAGCTTCTTCTGCAGTTAAGAAGTTATCCCTTTAGTGTCTTTTTGTATTTTTTCAATACTTTG
a att	B1/attB2 sequences, Shine-D	algarno and Kozac sequences, STREP II-tag sequence, changed nucleotides for point mutations.

Code	Resolution	Organism	E-Helix	Barrel height	Active site	Reference
3KTG	2.4 Å	Bacillus subtilis	straight	9 nm	aligned	(1)
3Q7H	2.5 Å	Coxiella burnetii	straight	9 nm	not aligned	-
1YG6	1.9 Å	Escherichia coli	straight	9 nm	aligned	(2)
3P2L	2.3 Å	Francisella tularensis	straight	9 nm	aligned	-
2ZL0	2.6 Å	Helicobacter pylori	straight	9 nm	aligned	(3)
1TG6	2.1 A	Homo sapiens	straight	9 nm	aligned	(4)
3STA	2.3 Å	Staphylococcus aureus	straight	9 nm	not aligned	(5)
3V5E	2.3 Å	Staphylococcus aureus	straight	9 nm	aligned	This study
3QWD	2.1 Å	Staphylococcus aureus	kinked (H123-K145)	8 nm	not aligned	(6)
2CBY	2.6 Å	Mycobacterium tuberculosis	not resolved (P125–I136)	8 nm	not aligned	(7)
2F6I	2.5 Å	Plasmodium falciparum	not resolved (P291–I304)	8 nm	not aligned	(8)
1Y7O	2.5 Å	Streptococcus pneumonia (A153P)	not resolved (P123–A139)	8 nm	not aligned	(9)
3TT6	2.6 Å	Bacillus subtilis	not resolved (P124–E136)	8 nm	not aligned	(10)

Supplementary Table 2: Comparison of ClpP-Structure entries of the PDB

Supplementar	y Table 3: Melting	Temperatures as	determined by	y thermal shift assays
		-		

SaClpP protein	Melting temperature ^a
wt	(47.3 ± 0.8 °C)
	$58.2 \pm 0.3 \ ^{\circ}\text{C}$
Q35A	58.1 ± 0.3 °C
S98A	n.d.
S98C	61.3 ± 1.0 °C
S98T	n.d.
G127AG128AG131A	60.6 ± 0.3 °C
Q130A	63.3 ± 0.3 °C
Q132A	44.6 ± 1.1 °C
E135A	62.1 ± 0.3 °C
E137A	45.1 ± 0.8 °C
L144E	(44.3 ± 0.6 °C)
	58.8 ± 0.3 °C
L144G	(45.3 ± 0.8 °C)
	56.6 ± 0.3 °C
L144M	(46.4 ± 1.5 °C)
	56.3 ± 0.9 °C
L144R	72.3 ± 0.6 °C
D170A	(56.0 ± 0.7 °C)
	60.8 ± 0.5 °C
R171A	58.5 ± 0.4 °C
R171K	$58.9 \pm 0.3 \text{°C}$

^a Melting temperatures were determined as described in the Materials and Methods Sections. Mean values \pm sd of three independent experiments are given. Minor peaks are in brackets.

Supplementary References:

- 1. Lee, B.-G., Park, E. Y., Lee, K.-E., Jeon, H., Sung, K. H., Paulsen, H., Rübsamen-Schaeff, H.,
- Brötz-Oesterhelt, H., and Song, H. K. (2010) Nat Struct Mol Biol 17, 471-478
- 2. Wang, J., Hartling, J. A., and Flanagan, J. M. (1997) Cell 91, 447–456
- 3. Kim, D. Y., and Kim, K. K. (2008) J Mol Biol 379, 760-771
- 4. Kang, S. G., Maurizi, M. R., Thompson, M., Mueser, T., and Ahvazi, B. (2004) *J Struct Biol* 148, 338-352

5. Zhang, J., Ye, F., Lan, L. F., Jiang, H. L., Luo, C., and Yang, C. G. (2011) *J Biol Chem* **286**, 37590-37601

- 6. Geiger, S. R., Böttcher, T., Sieber, S.A., Cramer, P. (2011) Angew Chem Int Ed Engl 50, 5749-5752
- 7. Ingvarsson, H., Maté, M. J., Högbom, M., Portno, D., Benaroudj, N., Alzari, P. M., Ortiz-Lombardí, M., and Unge, T. (2007) *Acta Crystallographica Section D* **D63**, 249-259

8. Vedadi, M., Lew, J., Artz, J., Amani, M., Zhao, Y., Dong, A., Wasney, G. A., Gao, M., Hills, T., and Brokx, S. (2007) *Mol Biochem Parasitol* **151**, 100-110

9. Gribun, A., Kimber, M. S., Ching, R., Sprangers, R., Fiebig, K. M., and Houry, W. A. (2005) *J Biol Chem* **280**, 16185-16196

10. Lee, B. G., Kim, M. K., and Song, H. K. (2011) Mol Cells 32, 589-595