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1 Model parameters

The mechanical parameters and the OHC parameters of the cochlear model are listed in Tables S1
and S2. The values of the geometrical and electrical parameters can be found in [5] and [3].

Table S1: Mechanical parameters (x in cm).

Param. Description Value Ref.

Kbm BM stiffness per unit length 2.1× 105 exp(−3.5x)N/m2 [10]
Dxx BM plate bending stiffness (xx) 10−10 exp(−0.5x)N.m [11]
Dxy BM plate bending stiffness (xy) 10−10 exp(−0.5x)N.m [11]
Dshear BM plate bending stiffness (shear) 4.3× 10−11 exp(−0.5x) [11]
Ktms TM shear stiffness per unit length 4.6× 104 exp(−3.5x)N/m2 based on [12]
Ktmb TM bending stiffness per unit length 1.67 × 104 exp(−3.5x)N/m2 [13]
Krl RL stiffness per unit length 1.4× 103 exp(−2x)N/m2 fit
Kohc OHC stiffness per unit length 1.4× 103 exp(−2x)N/m2 fit
Kst Stereocilia stiffness 0.350 exp(−3.6x)N/m [14]
Mbm BM mass per unit length 2.8× 10−7kg/m based on [15]
Mtms TM shear mass per unit length 2.4× 10−6 exp(0.5x)kg/m
Mtmb TM bending mass per unit length 1.2× 10−6 exp(0.5x)kg/m
cbm BM damping coefficient per unit length 0.085Ns/m2 assumed

chb HB damping coefficient ηf
Ltm

3Lhb
, where ηf is the

viscosity of the fluid, and Ltm [3]
and Lhb are the width and
height of the subtectorial space

ctmb TM bending damping coefficient 0.1Ns/m2 assumed
per unit length

Gtms TM shear modulus 7 exp(−3.75x)kPa [16]
ηtms TM shear viscosity 0.03Pa.s based on [4]

Table S2: OHC parameters (x in cm).
Parameter Description Value Ref

Gm basolateral conductance 900 exp(−3x)nS [7]
Cm basolateral capacitance 9pF (base) to 21 pF (apex) [7]
Gmax

a saturating HB conductance 172 exp(−2.05x)nS [6]
Ca apical OHC capacitance 0.5pF see [5]
G0

a resting apical conductance P s
0G

max
a

fgs single channel gating force 10pN [17]
ǫ3 OHC electromechanical coupling −1.04× (10−5 + 10−6x)N/m/mV [2]

coefficient
P s
0 resting probability 0.4 fit
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2 Stapes displacement

The stapes displacement, ustapes, is assumed to be given by:

ustapes(ω) = G(ω)Pstim (S1)

where Pstim is the pressure of the acoustic stimulation at the ear canal and G(ω) is a frequency
dependent function. G(ω) is chosen as a quadratic function that fits the experimental data from
Cooper [1] for the stapes vibrations of the guinea pig (see Fig. S1). The reference value is cho-
sen so that 0dB relative to this reference value correspond to 0dB SPL in [9]. The results from
simulations are then plotted as a function of the pressure Pstim, in dB SPL, so as to compare the
model predictions with experimental data. The 2nd and 3rd harmonic components of the stapes
displacement are assumed to be zero.
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Figure S1: Stapes displacement. The data from Cooper [1] is fitted by a quadratic function G(ω)
(see Eq. S1) to capture the frequency dependence of the stapes displacement.

3 Implementation of the alternative frequency time method

The governing equation governing the cochlear model in the frequency domain is given by Eq. 11.
In the problem solved here, the only nonlinear term is in the structural electrical coupling (due
to the nonlinearity of mechanoelectrical transduction), that depends only on the HB deflection,

uhb(t) (NLm

[

d(t)
]

= NLm

[

uhb(t)
]

). For a single tone stimulation, the right hand side, (Fp)m

is zero except for the fundamental (m = 1). The values of the variable x(t) at the discrete time

tq =
(q−1)T
NFFT

, where q = 1,...,NFFT and NFFT is an integer, are denoted as xq.

3.1 Algorithm: alternating frequency/time scheme

An iterative algorithm, named alternating frequency time (AFT) method and developed by Cameron
and Griffin [8], is used to solve Eq. 11. The algorithm alternates between the frequency (to solve
the system) and the time domains (to evaluate the nonlinear forcing term) using the Fourier and
inverse Fourier transforms. For the problem considered here, the algorithm, based on a fixed point
iteration, is the following:

1. Start with an initial guess (k = 0) in the frequency domain D
(0)
m where m=0,...,Nh − 1. We

chose to start with D
(0)
m = 0.
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2. Start of iteration k. Calculate the HB deflection in the frequency domain (Uhb)
(k)
m , where

m = 0,...,Nh − 1, using the kinematic relation between the HB deflection and the BM and
TM displacements.

3. Calculate the inverse fast Fourier transform (IFFT) of the HB deflection to obtain (uhb)
(k)
q ,

where q = 1,...,NFFT .

4. Calculate the nonlinear forcing term, nl(d), at the discrete times tq, nl(uhb)
(k)
q , where q =

1,...,NFFT , using Eq. 6.

5. Calculate the fast Fourier transform (FFT) of the nonlinear forcing term nl(uhb) to obtain

the nonlinearity in the frequency domain, NL(uhb)
(k)
m

6. Solve the Nh linear systems given by Eq. 11. The nonlinear forcing term is set to NL(uhb)
(k)
m .

The solution of the system is denoted as D
(k+1)
m

7. Check for convergence. If converged, stop. If not, start the iteration k + 1.

For the DC shift, the algorithm described above does not converge. Therefore, a modified Newton’s
iteration is used instead of the fixed point iteration for the DC component. To limit the computa-
tional cost, the matrix ∂NL(u)

∂U
is calculated only once, at the start of the first iteration. The other

components of the response are computed with a fixed point iteration.

3.2 Implementation of the algorithm

At each iteration, the algorithm requires to solve one ndof × ndof linear system (where ndof is the
number of degrees of freedom) for each harmonic component. For each component, the matrix of
the system depends only on the frequency. A LU decomposition algorithm is used to solve the
linear systems. A typical simulation requires the computation of the solution for different intensity
of stimulations (number of intensity of stimulation is defined as Ninput) at different stimulus fre-
quencies (the number of stimulus frequencies is defined as Nfreq). To mimimize the computational
cost, the computation is carried out in the following order:

1. For one stimulus frequency, calculate the matrices of the system for each harmonic component.

2. Compute the LU decomposition of the systems.

3. Compute the harmonic component of the solution for each magnitude of stapes displacement
using the AFT algorithm and the LU decomposition previously computed.

4. Repeat the process for the next stimulus frequency.

3.3 Convergence and computational cost of the algorithm

The alternating time/frequency method introduces numerical error in the solution, due to three
approximations: the finite number of discrete time points used for the FFT calculations, NFFT ,
the finite number of harmonic components, Nh, and the finite number of iterations, Niter. The
value of NFFT does not significantly affect the computational cost of the algorithm for the problem

considered here (because the nonlinear forcing terms, NL(u)
(k)
m , depends only on a few degrees of

freedom) and can be chosen sufficiently high (128 in the simulations) to obtain results with the
desired accuracy.
The relative error in the BM displacement is plotted as a function of the number of iterations in
Fig. S2, at CF and at CF/2. After 20 iterations the relative error in the fundamental is already less
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than 0.1. However for the DC shift, 2nd and 3rd harmonic components, 30 iterations are required
for the error to less than 0.1 at CF and about 0.1 at CF/2 (which is sufficient for our simulations).

The relative error is plotted as a function of Nh in Fig. S2 at CF and at CF/2. Obtaining
the fundamental with a reasonable accuracy only requires the computation of the fundamental,
as the relative error is about 0.01 both at CF and CF/2. The DC shift and the 2nd harmonic
component requires the computation of three components (the DC shift, the fundamental and the
2nd harmonic). The 3nd harmonic requires the computation of four components.

This implementation of the algorithm requires the storage in memory of the LU decomposition
of Nh matrices of size ndof × ndof . The matrices are stored in memory using profile storage. The
number of operations necessary to factorize each matrix is c1 = O(ndofb

2) where b is the bandwidth
of the matrix. The number of operations required to solve the system is c2 = O(ndofb) for each
iteration of the algorithm. The overall computation cost is:

ctot = O
[(

ndofb
2 +NiterNinputndofb

)

NhNfreq

]

, (S2)

where Niter is the number of iterations required for convergence. The number of iterations and
harmonic components required to obtain the converged components of the response of the BM, as
well as the required memory and computational time are summarized in Table S3.
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Figure S2: Convergence of the AFT algorithm. (a) and (b) Relative error in the BM displacement
as a function of the number of iterations. The error is computed at CF (a) and at CF/2 (b) for the
different harmonic components. The converged solution used as a reference for the computation
of the relative error is the solution after 60 iterations. (c) and (d) Relative error in the BM
displacement as a function of the number of harmonic components. The error is computed at
CF (c) and at CF/2 (d). The converged solution used for reference for the computation of the
relative error is the solution with 8 harmonic components. All simulations in (c) and (d) are with
30 iterations.
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Table S3: Number of harmonic components, number of iterations, memory and computational time
required for convergence.
Component Nh Niter Required Computational Computational

RAM time time
Nfreq = 1 Nfreq = 200
Ninput = 1 Ninput = 15

Fundamental 1 < 20 1.40GB 13s 4.5 hours

DC 3 30 2.32GB 52s 22.0 hours

2nd harmonic 3 30 2.32GB 52s 22.0 hours

3rd harmonic 4 30 3.77GB 68s 28.2 hours

Linear 1 1 0.688GB 10s 8.4 hours

4 Response at different longitudinal locations

The response to single tone simulation at different locations is shown in Fig. S3. As the location
moves from the basal to more apical locations, the peak of the fundamental BM response shifts to
lower frequencies (Fig. S3(a)). The peak of the response at low intensity (4dB SPL) becomes lower
and less sharp as the location approaches the apex. At the most apical locations, the response at
low intensity is indistinguishable from the response at high intensity of stimulation.

As seen in Fig. S3(b), the magnitude of the TM bending mode relative to the fundamental
decreases from basal locations (high CF) to more apical locations (low CF). For CF greater than
about 5kHz, the TM bending mode is more sensitive than the BM. The TM shearing mode is more
sensitive than the BM for CF greater than about 15kHz. The magnitude of the DC shift at 104dB
SPL in the BM (respectively on the TM bending mode) increases from 0.6nm (respectively 6nm)
for a CF of 25kHz to 6nm (respectively 23nm) for a CF of 6.5kHz. The DC shift for lower CF
is lower, with a magnitude of about 0.9nm (respectively 2nm) for a CF of 2kHz. The variation
of the DC shift with the CF can be explained to first order by the lower stiffness of the BM and
TM bending mode towards the apex. The solid lines for the DC shift on the BM and on the TM
bending mode corresponds to the following equations:

uDC
bm (x) =

ǫ3∆φDC
ohc

Kbm(x)
(S3)

uDC
tmb(x) =

ǫ3∆φDC
ohc

Ktmb(x)
(S4)

where ǫ3 and the DC shift in the OHC transmembrane potential, ∆φDC
ohc , are assumed to be inde-

pendent of x.
The 2nd harmonic is approximately within 30dB of the fundamental for stimulus frequency

equal to CF, for CF between 25kHz and 6.5kHz (Fig. S3(d)); for lower CF, the 2nd harmonic
is lower. For stimulus frequency equal to CF/2, the 2nd harmonic is approximately within 15dB
of the fundamental for CF between 25 and 12kHz; at more apical locations, the 2nd harmonic is
much lower. The fundamental and DC shift in the transmembrane potential are approximately
independent of the CF for CF between 25 and 3kHz.
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Figure S3: Response at different locations. a. Fundamental of the BM response as a function
of frequency at locations 0.25cm, 0.46cm, 0.62cm, 0.87cm, 1.12cm and 1.37cm from the base of
the cochlea. b. Magnitude of the TM shear and bending displacement relative to the stapes
displacement as a function of the CF of the location. c. Magnitude of the DC shift in the BM
and TM bending mode at CF at 104dB SPL as a function of the CF. d. Magnitude of the 2nd
harmonic relative to the fundamental at CF (crosses) and at CF/2 (circles) as a function of the
CF. e. Magnitude of the fundamental and DC shift in the OHC transmembrane potential at 104dB
SPL as a function of the CF.
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