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Catastrophes and rescues for arbitrary N

Catastrophes are associated with stochastic transitions between growing and
shrinking dynamic phases. The microtubule is in the growing phase when it
is found in one of polymer configurations with the unhydrolyzed cap of any
size or when the number of already hydrolyzed monomers at the end is less
than N. We define R}, ; as a probability to be in the polymer configuration
with [ T monomers at the end that are preceded by k£ D monomers (irre-
spective of the state of the other subunits), Q; as a probability to be in
the polymer configuration with [ D monomers at the end that are preceded
by k T monomers, and finally S}, ; is a probability that the last [ monomers
at the end are hydrolyzed except for the one subunit at position k& counting
from the end of the polymer. Formally these definitions can be also written
as,

Ryy=Prob(...D...D,T...T), Qp;=Prob(...T...T,D...D),
k l k l
Sgi=Prob(...D...T...D). (1)
l

Note that the probability P, to have the unhydrolyzed cap of exactly [
monomers can be expressed as P, = Ry, while the probability to be found
in the growing phase is

o) N-1
Pgr = ZRl,l + Z Ql,l- (2)
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The simple mean-field theory assumes that the state of the monomer in
the microtubule is independent of its neighbors, and it also estimates that
the probability to find T or D monomer k sites away from the polymer is
equal to b*~1q or (1 — b*~1q) respectively, with the parameter b given by

b= %. The probabilities defined in Eq. (1) can be easily calculated



yielding,

I+k—1 l
Ry = bl(l—l)/2ql H (1- qu)7 Qry = _ pk(2l+k-1) /2 H
j=l J=1

w : ~
—
w
~—

k-1
Sy =b"1q H
j=1

Then the probability to be found in the growing phase is

N-—1 k
Pp=q+ > Wq[Ja-v"g). (4)
k=1 j=1

The frequency of catastrophes f.(IN) in steady-state conditions can be
found from the fact that the total flux out of the growing phase, f.P,,, must
be equal to the flux to the shrmkmg phase, leading to the following equation,
fe(N)Py = WrRn 1+ Zk 1 Sk~ Using Egs. (3) and (4), it can be shown
that

Wr 1L, (1= ba) + 00 B T, (1= bt [TV (1= )
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fc(N) =
(5)

For N = 1, we obtain a simple expression for the frequency of catastrophes,
2
£o(1) = Wip(1=bg)+r, while for N = 2it gives f,(2) = YrU=ba)1-bg)tr[l-batb(1-q)]

T+b(1—q)
A limiting behavior of the frequency of catastrophes for general N can be

analyzed. For low concentrations of free GTP monomers in the solution,
corresponding to u — 0, we have ¢ — 0 and b — 1 + r/wp, produc-

ing fo(N) ~r+ 1+z,§;ﬁV<VlT+r )R For large N and small hydrolysis rates

(r/Wp < 1) the expression for the frequency of catastrophes is even simpler,
fe(N) ~r+ % Another limit of interest corresponds to large concentra-
tions (U > 1), where ¢ — 1 and b — 1, leading to f.(N) — 0 for all values
of N > 2, while for N =1 we have f.(1) —r

This method of analyzing catastrophes can be also extended to calcu-
lating frequency of rescue events f.(IN). The probability to find the micro-
tubule in the shrinking phase is equal to

N-1 k
Py =1-Pyp=1-q-Y bthq]J1-t""9). (6)
k=1 j=1




The total flux out of this state is given by f.(N)Ps, = UPg, + WpQ1 N,
which leads to the following equation

WbV [TjL, (1 —b1g)
1—q— Y0 Tl (1 —b—1q)

This expression can be further simplified to obtain the final result,

fr(N) =U+ (7)

fr(N) =U +WpbVq. (8)

For all values of N in the limit of U — 0 it yields f, ~ U, while for large U
we have f, ~ U + Wp.
In addition, the average time before the catastrophe or before the res-

cue can be easily obtained by inverting the corresponding expressions for
frequencies, namely, T.(N) = 1/f.(N) and T,,(N) = 1/ f.(N).



