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Parameter estimates.

The eight model parameters along with estimated valuesianengirized in Table 1. We have used published
parameter values where available and varied parameterseniadues are presently unknown or have large
experimental uncertainties. The diffusion coefficient ggmbrane-anchored molecules is in the range of
D ~0.01um?/s (1). We take the length of LSMs to hg = 50 nm and the receptor-ligand bond length
to bezy = 13 nm (3, 4). Estimates ot); are available for many receptor-ligand interactions ardimr
the range of 0.01 - 1078 (4, 5). The number of LSMs on a typical cell surface is larger &ample, the
transmembrane molecule CD45 with an ectodomain length mfospmately 50 nm is the most abundant
cell surface molecule on lymphocytes (4). We take the canagon of LSMs to beP) = 1000 um~2 (4).
The membrane bending stiffness has been variously meaandede take a value afy; = 50 pN nm (7).
Given the uncertainty i®,, 2o, 2p, andF, we systematically vary these.

The two key parameters that are presently unknown are the fiarameterf(z) and the compressional
stiffness of LSMs k).

The compressional stiffness of LSMs is presently unknowralstan approximate value, we takg =
0.1 pN/nm which was recently reported for ICAM-1 (2). A FRET sysi, whereby a donor/acceptor pair
are placed at the end of the ectodomain and at the membraglet pnovide information on the fraction of
time the LSM is near the membrane and this quantity is diyeetated tok,,.

Estimates offp are available for a limited number of receptor-ligand iatgions but are often in the



range offp =~ 10 pN (6). This parameter determines the relevant tensiore swalvhich a chemical bond
responds and this parameter can be measured using atowgcndcroscopy or a flow chamber (17). By
varying the applied force, such experiments can also valifta refute) the Bell/Kramer model.

Mechanical quasi-equilibrium

Lateral reorganization of LSMs occurs on timescales rapfyom milliseconds (under forces ¢f~ 10 pN,

7 = w/pf ~ 1 millisecond) to seconds (when purely diffusive,= w?/D ~ 1 second). Mechanical
relaxation of the membrane and the elastic response of LSIviteé-limited membrane deformation, with
a timescale of microseconds for a free membrane on lengtesscal 00 nm where hydrodynamic effects
are negligible (8, 9). Because of this separation of timescave assume the system is in mechanical
equilibrium at each instant on the timescale of lateral LSbtion. While more complicated treatments of
membrane dynamics, including thermal fluctuations (10,akit) non-instantaneous (12) and nonlocal (13)
dynamics, are possible, we use a simple model that captuieesssential physics of the system.

Estimation of attachment timescales

Our initial conditions assume a homogenous distributionQM¥ at the time of binding. This is based on the
assumption that receptor-ligand binding occurs when tloeenth@mbranes are in proximity due to fluctuations
of the membrane and LSM compression or by an active procash, as a filopodia-like protrusion, that

transiently compresses the LSM. Another possibility ig thends form when there is a region of width

~ w transiently depleted, pre-evacuated, of LSM by diffusiactihations. However, here we show that the
timescale of formation of pre-evacuated regions is a provéty rare event.

We first compute the probability of finding a pre-evacuated patch. The patch is a circle ofusadi
w ~ 100 nm (see Results). The total surface area of the cell &) m? (4), much larger than the area of
the patch. For now, we assume the membrane is a planar diskadius! > w, centered on the patch.
It containsn = Py7i? particles. One particle’s probability of being inside traqh is simply the ratio of
the area of the patch to the total are&,//>. Because diffusion is uniform and the particles are assumed
not to interact, the probability of all particles being adésthe patch is the probability of one particle being
outside the patch, multiplied times, giving
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Taking the limit ad > w givesp = exp(—Pyrw?). For parameters in Table 1, this givess 10714, We
conclude that the probability of a particular receptoatid pair finding an open patch is extremely small.

Because diffusion in this system is ergodic (14), the qtyamptis also the fraction of time a region is

empty. This implies
lo
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wheret is the mean time the region remains empty and the mean time the region is non-empty. Here
we make a crude estimate tf., which represents how long the receptor-ligand pair must before a




pre-evacuated region forms, allowing it to bind. Rearraggind expanding for smalgivest,,. ~ top~".

We compute an order-of-magnitude estimateqaby assuming that the membrane surface, with a circular
region of radiugw removed, has uniform LSM densifyy. The timescale for the empty region to equilibrate
to its steady-state densit§), is t ~ w?/D from scaling arguments (15), at which point it will contain,
on average Pyw? LSM particles. By linear approximation, the first few paei enter after a timé&, ~
(1/Pyw?)(w?/D) = 1/(PyD). This leads to a rough estimate 9f. ~ 1/(PyD) exp(+Pymw?). Using
parameters from Table 1, thisdis ~ 10'2s. This long time is further suggestion that binding mustuocc
by a process other than LSM pre-evacuation.

An alternative mechanism of binding is the spontaneoustfi@mal) compression of all or most LSM
in the patch of radiug. This would involve an energy of kpzf, ~ 32kpT for each ofn ~ 31 particles,
requiring= 900k T, which is exceedingly unlikely to be provided by thermal fuations. Taken together,
the above estimates suggest an active process is requisegiéeze the LSM and membranes together,
allowing for receptor-ligand binding.

Model analysis

The model is described by the drift-diffusion equation E@ntl mechanical energy functional Eg. 3 in the
main text. Here we assume radial symmetry and derive nondiimieal equations, which we use to perform
scaling analysis and numerical simulation.

We define a lateral length scale= (k. /kpPy)"/* and rescale lateral position 8 = r /w. Time is
rescaled by the diffusive timescale= ¢ D /w?; LSM concentration by its initial concentratiap = P/ Py;
energy to the thermal scate = E/kpT; and membrane separatienis rescaled to a relative membrane
displacementZ = (zp — 2z)/(zp — z0). In nondimensional terms, the drift-diffusion equatioctmes

0

a—g = V2Q + PeV - (QZV Z) 3)
wherePe = kp(zp—2)?/kpT is the Péclet number describing the relative importanakitifto diffusion,
in this case due to LSM compression and thermal motion réispgc The mechanical energy functional
becomes
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where&y = s (zp — 20)?/(kpTw?). Imposing radial symmetry leads to
0Q 10 oQ 1 0 0z
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and& = [, # dR where

11 /0 (.02\\> 1 )
The generalized Euler-Lagrange equation to miningize o€ /6 Z(R) = 0, which gives

QRZ+ 7' |R* — Z" /R + 22" + RZ™) =0 (7)
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with boundary conditionsZ (Ry) = 1, Z'(Ro) = Z(Rmaz) = Z'(Rmae) = 0. The generalized Euler-
Lagrange equation also provides a convenient way to contpetéension at the bond site by using the
surface term corresponding & | z—r, = 0, which givesF = 27&(RZ" + Z" — Z'/R)|p=r, -

These results provide the following scaling relations. Tteral width of the membrane deformation
zone and radius of LSM depletion i§ ~ 1, orx ~ w. The tension on the bond 5 ~ 27& in units of

k‘BT/(ZP — Zo), or

[~ " =2n(zp — 20)V kmkpDo. (8)
The timescale of LSM evacuation and return are, respegtif@bpiete ~ 1/Pe andTrewum ~ 1, Or, respec-
tively
" l KM kBT " i KM (9)
deplete D\ kpPy kP(ZP — 20)2 ) return D\ kpP, .

The scaling results in Egs. 8-9 are order-of-magnitudenedéis that are confirmed by numerical results
(Fig. S2).

Numerical method

To obtain numerical solutions, we discretize space intggiwith AR = 0.1 and Eq. 5 using a finite area
method and forward-Euler for time marching, with time st&p’ determined dynamically by the Courant
condition (16). To solve Eg. 7, we use a numerical relaxatiireme with a Newton-Raphson solver at each
time step. Simulations are performed in MATLAB (The Math\W&rNatick, MA). We find the solution
insensitive toRy and R, (providedR, ... > 1), thus there is only one significant paramefe#, Several
guantities summarizing simulation results are shown asetifon of Pe in Fig. S2. All results in the main
text are taken from these simulations at appropriate valtiés and converted to physical units.
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Supplementary Figures
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Fig. S1: Intermembrane distance profiles. Shown is thermgarbrane distance (y-axis) as a function of the
position where 0 nm is the location of the receptor-liganthplex. Profiles are shown fot 0.00, 0.03,
and0.28 s and the grey arrow indicates the direction of increasimg tiNote that these small changes in
intermembrane distance give rise to large changes in tlepteeligand bond tension (Fig. 3).
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Fig. S2: Numerical simulations of nondimensional model asation of parametePe, the ratio of lateral
LSM motion due to compression to thermal diffusion. A) laitand steady-state tension on bond. B) Total
equilibration time, defined as the time until the system glearless tham0— per time unit; Tension decay
halftime; and bond-site depletion half-time, defined astiime for the width of the LSM depletion zone
to reach half its steady-state width. C) Width of membran®rdeation zone and LSM depletion zone,
both defines as full-width at half-max. See Methods for reteship between nondimensional variables and
model parameters.
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