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Parameter estimates.

The eight model parameters along with estimated values are summarized in Table 1. We have used published
parameter values where available and varied parameters whose values are presently unknown or have large
experimental uncertainties. The diffusion coefficient of membrane-anchored molecules is in the range of
D ∼0.01µm2/s (1). We take the length of LSMs to bezp = 50 nm and the receptor-ligand bond length
to bez0 = 13 nm (3, 4). Estimates ofk0off are available for many receptor-ligand interactions and are in
the range of 0.01 - 10 s−1 (4, 5). The number of LSMs on a typical cell surface is large. For example, the
transmembrane molecule CD45 with an ectodomain length of approximately 50 nm is the most abundant
cell surface molecule on lymphocytes (4). We take the concentration of LSMs to beP0 = 1000 µm−2 (4).
The membrane bending stiffness has been variously measuredand we take a value ofκM = 50pN nm (7).
Given the uncertainty inkp, z0, zp, andP0, we systematically vary these.

The two key parameters that are presently unknown are the force parameter (fB) and the compressional
stiffness of LSMs (kp).

The compressional stiffness of LSMs is presently unknown but as an approximate value, we takekp =
0.1pN/nm which was recently reported for ICAM-1 (2). A FRET system, whereby a donor/acceptor pair
are placed at the end of the ectodomain and at the membrane, might provide information on the fraction of
time the LSM is near the membrane and this quantity is directly related tokp.

Estimates offB are available for a limited number of receptor-ligand interactions but are often in the
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range offB ≈ 10 pN (6). This parameter determines the relevant tension scale on which a chemical bond
responds and this parameter can be measured using atomic force microscopy or a flow chamber (17). By
varying the applied force, such experiments can also validate (or refute) the Bell/Kramer model.

Mechanical quasi-equilibrium

Lateral reorganization of LSMs occurs on timescales ranging from milliseconds (under forces off ∼ 10pN,
τ = w/µf ∼ 1 millisecond) to seconds (when purely diffusive,τ = w2/D ∼ 1 second). Mechanical
relaxation of the membrane and the elastic response of LSMs is rate-limited membrane deformation, with
a timescale of microseconds for a free membrane on length scales< 100nm where hydrodynamic effects
are negligible (8, 9). Because of this separation of timescales, we assume the system is in mechanical
equilibrium at each instant on the timescale of lateral LSM motion. While more complicated treatments of
membrane dynamics, including thermal fluctuations (10, 11)and non-instantaneous (12) and nonlocal (13)
dynamics, are possible, we use a simple model that captures the essential physics of the system.

Estimation of attachment timescales

Our initial conditions assume a homogenous distribution ofLSM at the time of binding. This is based on the
assumption that receptor-ligand binding occurs when the two membranes are in proximity due to fluctuations
of the membrane and LSM compression or by an active process, such as a filopodia-like protrusion, that
transiently compresses the LSM. Another possibility is that bonds form when there is a region of width
∼ w transiently depleted, pre-evacuated, of LSM by diffusion fluctuations. However, here we show that the
timescale of formation of pre-evacuated regions is a prohibitively rare event.

We first compute the probabilityρ of finding a pre-evacuated patch. The patch is a circle of radius
w ≈ 100nm (see Results). The total surface area of the cell is∼ 30µm2 (4), much larger than the area of
the patch. For now, we assume the membrane is a planar disk with radiusl ≫ w, centered on the patch.
It containsn = P0πl

2 particles. One particle’s probability of being inside the patch is simply the ratio of
the area of the patch to the total area,w2/l2. Because diffusion is uniform and the particles are assumed
not to interact, the probability of all particles being outside the patch is the probability of one particle being
outside the patch, multipliedn times, giving

ρl =

(

1−
w2

l2

)n

=

(

1−
w2

l2

)P0πl2

. (1)

Taking the limit asl ≫ w givesρ = exp(−P0πw
2). For parameters in Table 1, this givesρ ≈ 10−14. We

conclude that the probability of a particular receptor-ligand pair finding an open patch is extremely small.

Because diffusion in this system is ergodic (14), the quantity ρ is also the fraction of time a region is
empty. This implies

t0
t0 + tne

= ρ (2)

wheret0 is the mean time the region remains empty andtn is the mean time the region is non-empty. Here
we make a crude estimate oftne, which represents how long the receptor-ligand pair must wait before a
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pre-evacuated region forms, allowing it to bind. Rearranging and expanding for smallρ givestne ≈ t0ρ
−1.

We compute an order-of-magnitude estimate oft0 by assuming that the membrane surface, with a circular
region of radiusw removed, has uniform LSM densityP0. The timescale for the empty region to equilibrate
to its steady-state densityP0 is t ∼ w2/D from scaling arguments (15), at which point it will contain,
on average,P0w

2 LSM particles. By linear approximation, the first few particles enter after a timet0 ∼
(1/P0w

2)(w2/D) = 1/(P0D). This leads to a rough estimate oftne ∼ 1/(P0D) exp(+P0πw
2). Using

parameters from Table 1, this istn ∼ 1012 s. This long time is further suggestion that binding must occur
by a process other than LSM pre-evacuation.

An alternative mechanism of binding is the spontaneous (i.e. thermal) compression of all or most LSM
in the patch of radiusw. This would involve an energy of∼ kpz

2
p ≈ 32kBT for each ofn ≈ 31 particles,

requiring≈ 900kBT , which is exceedingly unlikely to be provided by thermal fluctuations. Taken together,
the above estimates suggest an active process is requires tosqueeze the LSM and membranes together,
allowing for receptor-ligand binding.

Model analysis

The model is described by the drift-diffusion equation Eq. 1and mechanical energy functional Eq. 3 in the
main text. Here we assume radial symmetry and derive nondimensional equations, which we use to perform
scaling analysis and numerical simulation.

We define a lateral length scalew ≡ (κM/kPP0)
1/4 and rescale lateral position toR = r/w. Time is

rescaled by the diffusive timescaleT ≡ tD/w2; LSM concentration by its initial concentrationQ ≡ P/P0;
energy to the thermal scaleE = E/kBT ; and membrane separationz is rescaled to a relative membrane
displacement,Z ≡ (zP − z)/(zP − z0). In nondimensional terms, the drift-diffusion equation becomes

∂Q

∂T
= ∇2Q+ Pe∇ · (QZ∇Z) (3)

wherePe ≡ kP (zP −z0)
2/kBT is the Péclet number describing the relative importance ofdrift to diffusion,

in this case due to LSM compression and thermal motion respectively. The mechanical energy functional
becomes

E = E0

∫∫

1

2
(∇2Z)2 +

1

2
QZ2da (4)

whereE0 ≡ κM (zP − z0)
2/(kBTw

2). Imposing radial symmetry leads to

∂Q

∂T
=

1

R

∂

∂R

(

R
∂Q

∂R

)

+ Pe
1

R

∂

∂R

(

QRZ
∂Z

∂R

)

(5)

andE =
∫ RM

R0
H dR where

H = 2πE0

(

1

2

1

R

(

∂

∂R

(

R
∂Z

∂R

))2

+
1

2
QRZ2

)

. (6)

The generalized Euler-Lagrange equation to minimizeE is δE/δZ(R) = 0, which gives

QRZ + Z ′/R2 − Z ′′/R+ 2Z ′′′ +RZ(iv) = 0 (7)
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with boundary conditionsZ(R0) = 1, Z ′(R0) = Z(Rmax) = Z ′(Rmax) = 0. The generalized Euler-
Lagrange equation also provides a convenient way to computethe tension at the bond site by using the
surface term corresponding toδZ|R=R0

= 0, which givesF = 2πE0(RZ ′′′ + Z ′′ − Z ′/R)|R=R0
.

These results provide the following scaling relations. Thelateral width of the membrane deformation
zone and radius of LSM depletion isX ∼ 1, or x ∼ w. The tension on the bond isF ∼ 2πE0 in units of
kBT/(zP − z0), or

f ∼ f∗ = 2π(zP − z0)
√

κMkPP0. (8)

The timescale of LSM evacuation and return are, respectively, Tdeplete∼ 1/Pe andTreturn ∼ 1, or, respec-
tively

tdeplete∼
1

D

√

κM
kPP0

·
kBT

kP (zP − z0)2
, treturn∼

1

D

√

κM
kPP0

. (9)

The scaling results in Eqs. 8-9 are order-of-magnitude estimates that are confirmed by numerical results
(Fig. S2).

Numerical method

To obtain numerical solutions, we discretize space into rings with∆R = 0.1 and Eq. 5 using a finite area
method and forward-Euler for time marching, with time step∆T determined dynamically by the Courant
condition (16). To solve Eq. 7, we use a numerical relaxationscheme with a Newton-Raphson solver at each
time step. Simulations are performed in MATLAB (The MathWorks, Natick, MA). We find the solution
insensitive toR0 andRmax (providedRmax ≫ 1), thus there is only one significant parameter,Pe. Several
quantities summarizing simulation results are shown as a function ofPe in Fig. S2. All results in the main
text are taken from these simulations at appropriate valuesof Pe and converted to physical units.
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Supplementary Figures
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Fig. S1: Intermembrane distance profiles. Shown is the intermembrane distance (y-axis) as a function of the
position where 0 nm is the location of the receptor-ligand complex. Profiles are shown for t= 0.00, 0.03,
and0.28 s and the grey arrow indicates the direction of increasing time. Note that these small changes in
intermembrane distance give rise to large changes in the receptor-ligand bond tension (Fig. 3).
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Fig. S2: Numerical simulations of nondimensional model as afunction of parameterPe, the ratio of lateral
LSM motion due to compression to thermal diffusion. A) Initial and steady-state tension on bond. B) Total
equilibration time, defined as the time until the system changes less than10−3 per time unit; Tension decay
halftime; and bond-site depletion half-time, defined as thetime for the width of the LSM depletion zone
to reach half its steady-state width. C) Width of membrane deformation zone and LSM depletion zone,
both defines as full-width at half-max. See Methods for relationship between nondimensional variables and
model parameters.
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