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1. Completion of crystal structure and construction of the simulation system. 

The atomic coordinates of Met1, all residues in the cytoplasmic loop (CL), the C-terminal domain (CT), the side 

chains of residues K15, S17, and S19 and all hydrogen atoms were not defined in the published structure of 

Cx26 (PDB:2ZW3) (1). We completed the structure in the following manner: 1) The coordinates of Met1 were 

taken from the lowest energy conformer of a N-terminal Cx26 peptide solved by NMR (2).  2) The 15 residue 

CL segment, which has a high probability of disordered structure, ranging from 0.67 to 0.78 as assessed by 

metaPrDos (http://prdos.hgc.jp/meta/) (3), was added as a random structure connecting the defined helical 

portions of TM2 with TM3.  The Cα-coordinates of the 15 residue CL were initially assigned by linear 

interpolation of the distance between residues 109 (TM2) and 125 (TM3). 3) Similarly, metaPrDos predicted 

that the 9 residue intracellular CT would adopt a random structure and the 9 residues of the CT were built as a 

linear extension of the TM4 helix. 4) Subsequently, the coordinates of undefined atoms in the CL and CT 

sequences, and those of residues K15, S17, S19 in the N-terminus were designated by their CHARMM 22 all-

atom protein parameters (4, 5). 5) Disulfide bonds identified in the crystal structure were created between C53-

C180, C60- C174, and C64-C169 in each of the six subunits. 6) Protonation of histidine residues were 

determined by the hydrogen bond pattern in the crystal structure and assigned as either HSD or HSE. These 

assignments agree with the pKa’s predicted with PROPKA 3.0, http://propka.ki.ku.dk/ (6-8). 7) The original 

coordinates of the atoms in the x-ray structure were fixed and the completed structure including all hydrogen 

atoms was minimized in vacuum using alternate cycles of steepest descent (SD) and adopted basis Newton-

Raphson (ABNR) until the energy difference between steps was less than 10
-7

 kcal/mol (3570 SD and 800,000 

ABNR total steps). The channel was then integrated into a 1-palmytoyl-2-oleoyl-sn-glycero-3-

phosphatidylcholine (POPC) lipid membrane. The dimension of the POPC membrane, 150 Å x 150 Å, was 

twice that of the x-y dimension of the protein. The area of the membrane was determined based on the 

experimentally determined surface area of a POPC molecule (9) and fixed throughout the simulation. A 

tetragonal periodic boundary box, 150 Å x 150 Å x 110 Å including the protein, lipid membrane, TIP3 waters, 

and 150 mM KCl was constructed with Membrane Builder program in CHARMM-GUI (10-12).  

2. Molecular dynamics simulations. 

All protein atoms in this system used the CHARMM 22 all-atom force field with dihedral cross-term correlation 

(CMAP) corrections (4, 13). The CHARMM 27r all-atom force field was used for lipid molecules (14). The 

system was initially equilibrated for 375 ps in CHARMM (15, 16) at 303.15 K, using a method developed by 

Woolf and Roux (17, 18). Force constraints were reduced, first with NVT dynamics using the Langevin 

temperature control and then with NPnAT dynamics using the Nosé-Hoover thermostat (19). The system was 

equilibrated for 140 ns at 310 K using NPnAT dynamics in NAMD2.7b2 (20) with no constraints. NVT is the 

ensemble name for constant number of particles (N), volume (V), and temperature (T). NPnAT is the ensemble 

name for constant number of particles (N), pressure in normal direction (Pn), cross-sectional area (A), and 

temperature (T). Trajectories were calculated with a 2 fs time step (except the initial 75 ps where they were 
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calculated with a 1 fs time step) with the SHAKE algorithm at 1 atm and 310 K. Electrostatic interactions were 

calculated using particle mesh Ewald method (PME) (21). Following a 150 ns equilibration, an autocorrelation 

analysis was performed on the last 10 ns of the RMSD trajectory of the protein, and estimated the relaxation 

time of the protein backbone as ~2 ns. Based on the relaxation time, four independent 20-ns production stage 

simulations were performed from the 140 ns time point. The V43A+I74V mutation was created with the IC 

module of CHARMM on the wild-type structure corresponding to the 140 ns time point. The side chains of the 

mutated residues were minimized by 200 SD and 200 ABNR steps in CHARMM and equilibrated with an 

additional 10-ns simulation in NAMD. Autocorrelation analysis of the mutant RMSD provided a relaxation 

time similar to wild type (~ 2 ns). The trajectories of all van der Waals interactions equilibrated within 10 ps. 

Consequently, 4 independent 10-ns simulations were performed on the double mutant. 

3. Construction of interaction lists. 

The van der Waals interaction list was prepared by identifying all atom-atom pairs in the side chains of 

hydrophobic residues (Ala, Val, Leu, Ile, Met, Phe, Trp and Tyr) that were located within 3 Å of each other for 

at least 0.2 ns in any of the four replicate 20 ns production stage simulations (1% of the length of the trajectory). 

The assembled list was converted into a residue-residue list. Time series of distance and van der Waals energies 

for residue pairs having more than 5 atom-atom interactions were constructed. Residue pairs with interaction 

energies > -0.3 kcal/mol were not included in the van der Waals interaction list. 

The electrostatic interaction list was prepared by identifying all atoms that could participate in hydrogen bond 

formation that were located within 2.4 Å of each other for at least 0.2 ns in any of the four 20 ns production 

stage simulations.  

Comparison of the electrostatic and van der Waals interaction lists for the crystal and equilibrated Cx26 

hemichannels are presented in the Supplement of Kwon et al. (22). 

4. Calculation of van der Waals and electrostatic interactions.  

van der Waals interactions for pairs of amino acid residues were determined by solutions of Lennard-Jones 

potentials in CHARMM. For the crystal structure, hydrogen atoms were added with the HBUILD module of 

CHARMM and their positions minimized as described in the construction of the simulation system. 

Electrostatic interactions were calculated by solution of Coulombs law in CHARMM. 

5. Comparison of electrostatic networks in the crystal and equilibrated structures.  

The electrostatic network of the crystal structure, based on our analysis of the atomic coordinates provided in 

PDB file, 2ZW3, is shown in Fig. 3C and D. The principle difference is the expansion of the electrostatic 

network following MD simulations to include residues E42 (E1), K188 (TM4), Q48 (E2), N62 and S183 (E2). 

The participation of both the side chain and backbone carbonyl of E42 in the electrostatic network was absent in 

the crystal structure, as was the interaction between D46 and K188. In addition we did not observe several 

interactions proposed by Maeda et al (1). These include hydrogen bonding of R184 ← Y65 as well as Q48 ← 

D50, and Q48 ← E46. The distance separating R184 and Y65 as well as Q48 and E46 in the dynamic structures 

fluctuated between 4 and 10 Å, distances much greater than the 2.4 Å (the distance between a proton and it 

acceptor) required for hydrogen bond formation. The distance between R184 and Y65 and between Q48 and 

E46 in the crystal structure also exceeds the 2.4 Å cutoff we employ to identify hydrogen bond formation. 



 

 

 

 

Unlike all other charged residues in the TM1/E1 region, K41 is freely mobile in the channel pore and does not 

participate in any substantial long-lived electrostatic interactions. 

6. Figure S1. Fluctuations in backbone H-bonding in the parahelical region. The time series of five H-bonds 

(green lines in A) that define a parahelix (23) are shown for a representative subunit in the Cx26 hemichannel 

during the production stage equilibrations. Blue dots in B-F (leftmost sections) are the distances between 

designated interactions in the crystal structure. We assume H-bonds are formed when the distance between a 

proton and its acceptor is ≤ 2.4 Å (24). 

 

7. Figure S2. Stabilization of the TM1/E1 bend angle. In addition to the A39o – V43hn hydrogen bond 

(depicted by dashed green lines and labeled (1) and van der Waals interactions (Fig. 2), the TM1/E1 bend angle 

is stabilized by electrostatic interactions between K22 (TM1) and E209 (TM4) (labeled (2)) and R32 (TM1) and 

E147 (TM3) (labeled (3). Arrow indicates TM1/E1 bend angle. Fluctuations in the time series of both 

electrostatic interactions shown in panels B and C are representative of all six subunits.  



 

 

8. Figure S3. Time series of properties indicated in Fig. 4 for the entire MD simulations, including the 140 ns 

equilibration and 4 – 20 ns production stage simulations. The time series behaviors were asynchronous over the 

first 100 ns of the production stage simulation and several time series properties were not equilibrated prior to 

100 ns. At ~ 100 ns, fluctuations among the time series of indicated properties became synchronized, 

fluctuating in unison for the remainder of the equilibration stage (100-140 ns: green bar) and throughout the 4 – 

20 ns production stage simulations (see Fig S4 below). 

 

9. Figure S4. Cross-correlations between the time series of properties presented in Fig. 4. Cross-correlations are 

shown for properties of adjacent residues shown in Panel A. Panel B is a control – cross-correlation analysis 

was performed on time series E47 dihedral angle x E47 dihedral angle to illustrate the plot of a perfect 

correlated time series. The cross correlation relation of this comparison is centered at a lag-time (delay) of 0 and 

 



 

 

the correlation-time lag relation is perfectly symmetric. The time delay is the lag-time at maximum correlation. 

A time delay of 0 means that the two time series are synchronized at t = 0; perfect symmetry means that the two 

time series are synchronized over the entire time series. The degree of asymmetry in the cross-correlation - time 

lag relation was determined with the equation: 

           ∑                )                ))     
    : [t] = 0.01 ns 

 

All cross-correlations of the time series properties were centered at a time-lag of 0 with correlations > 0.70 at 

this value and displayed a high degree of symmetry; indicating highly synchronous behavior of the time series 

properties compared.  

 

 

 



 

 

10. Figure S5. Schematic illustration of the intracellular portion of the channel pore showing the proposed 

formation of the loop-gate permeability barrier by change in structure of the parahelix that allows it to protrude 

into the channel pore (1) and straightening of the TM1/E1 bend angle which reduces the pore diameter at the 

cytoplasmic entrance of the channel pore. Parahelix is depicted in red; TM1-blue; NT residues 1-15 - green, and 

the cytoplasmic portion (residues 87-108) of TM2 yellow. 

 

Table S1. vdW interaction energies of residues pairs: blue – intra-subunit, red inter-subunit interactions. 

A. Crystal structure 

35 36 38 39 40 43 44 51 65 68 69 71 74 76 77 79 154 158 163 182 191 195 196 191

35 x x x x x x x x x x x x x x x x x x x x -0.85 x x x

36 x x x x x x x x x x x x -0.64 x 1.76 x x x x x x -0.30 x x

38 x x x x x x x x x x x x x x x x x x x x 1.66 x x x

39 x x x x x x -0.42 x x x x x -0.44 x x x x x x x 5.40 -0.11 x x

40 x x x x x x x x x x x x 0.82 x x x x x x x x x x x

43 x x x x x x 3.04 x x x x x x x x x x x x x -0.63 x x x

44 x x x -0.42 x 3.04 x x x x -0.65 x -2.34 x x x x x 0.17 x x x x x

51 x x x x x x x x -1.62 x x x x x x x x x x x x x x x

65 x x x x x x x -1.62 x x -2.45 x x x x x x x x x x x x x

68 x x x x x x x x x x 0.07 x x x x x x x -0.03 x x x x x

69 x x x x x x -0.65 x -2.45 0.07 x x x x x x x -0.81 x -1.00 x x x x

71 x x x x x x x x x x x x x x x x x x x x x x x -0.76

74 x -0.64 x -0.44 0.82 x -2.34 x x x x x x x 2.10 x x x x x x -0.23 x x

76 x x x x x x x x x x x x x x x x 4.34 x x x x x x x

77 x 1.76 x x x x x x x x x x 2.10 x x x -3.39 x x x x -1.51 1.27 x

79 x x x x x x x x x x x x x x x x x x x x x x x -0.98

154 x x x x x x x x x x x x x 4.34 -3.39 x x x x x x x x x

158 x x x x x x x x x x -0.81 x x x x x x x x x x x x x

163 x x x x x x 0.17 x x -0.03 x x x x x x x x x -0.81 x x x x

182 x x x x x x x x x x -1.00 x x x x x x x -0.81 x x x x x

191 -0.85 x 1.66 5.40 x -0.63 x x x x x x x x x x x x x x x x x x

195 x -0.30 x -0.11 x x x x x x x x -0.23 x -1.51 x x x x x x x x x

196 x x x x x x x x x x x x x x 1.27 x x x x x x x x x

191 x x x x x x x x x x x -0.76 x x x -0.98 x x x x x x x x

 

 

 

 

 



 

 

B. Equilibrated structure (WT) 

35 36 38 39 40 43 44 51 65 68 69 71 74 76 77 79 154 158 163 182 191 195 196 *191

35 x x x x x x x x x x x x x x x x x x x x -0.82 x x x

36 x x x x x x x x x x x x -0.52 x -0.64 x x x x x x -0.99 x x

38 x x x x x x x x x x x x x x x x x x x x -0.80 x x x

39 x x x x x -0.27 -0.33 x x x x x -0.30 x x x x x x x -0.48 -0.18 x x

40 x x x x x x -0.09 x x x x x -0.35 x x x x x x x x x x x

43 x x x -0.27 x x -0.90 x x x x x x x x x x x x x -1.25 x x x

44 x x x -0.33 -0.09 -0.90 x x x x -0.62 x -1.69 x x x x x -1.20 x x x x x

51 x x x x x x x x -1.81 x x x x x x x x x x x x x x x

65 x x x x x x x -1.81 x x -2.00 x x x x x x x x x x x x x

68 x x x x x x x x x x -1.92 x x x x x x x -0.37 x x x x x

69 x x x x x x -0.62 x -2.00 -1.92 x x x x x x x -1.02 x -0.34 x x x x

71 x x x x x x x x x x x x x x x x x x x x x x x -0.67

74 x -0.52 x -0.30 -0.35 x -1.69 x x x x x x -0.71 x x x x x x -0.53 x x

76 x x x x x x x x x x x x x x x x -0.78 x x x x x x x

77 x -0.64 x x x x x x x x x x -0.71 x x x -2.30 x x x x -2.55 -0.80 x

79 x x x x x x x x x x x x x x x x x x x x x x x -1.07

154 x x x x x x x x x x x x x -0.78 -2.30 x x x x x x x x x

158 x x x x x x x x x x -1.02 x x x x x x x x x x x x x

163 x x x x x x -1.20 x x -0.37 x x x x x x x x x -0.61 x x x x

182 x x x x x x x x x x -0.34 x x x x x x x -0.61 x x x x x

191 -0.82 x -0.80 -0.48 x -1.25 x x x x x x x x x x x x x x x x x x

195 x -0.99 x -0.18 x x x x x x x x -0.53 x -2.55 x x x x x x x x x

196 x x x x x x x x x x x x x x -0.80 x x x x x x x x x

*191 x x x x x x x x x x x -0.67 x x x -1.07 x x x x x x x x

Residue pairs shaded red were identified in the cluster analysis (MMTSB) but these were excluded from the 

interaction list by the criteria used in the construction of interaction lists described above. The calculated 

average energies for all pairs of residues in the final interaction list were < - 0.34 kcal/mol. 

C. V43A+I74V 

35 36 38 39 40 43 44 51 65 68 69 71 74 76 77 79 154 158 163 182 191 195 196 *191

35 x x x x x x x x x x x x x x x x x x x x -0.78 x x x

36 x x x x x x x x x x x x -0.41 x -0.74 x x x x x x -1.05 x x

38 x x x x x x x x x x x x x x x x x x x x -0.84 x x x

39 x x x x x x -0.36 x x x x x -0.27 x x x x x x x -0.44 -0.24 x x

40 x x x x x x x x x x x x -0.33 x x x x x x x x x x x

43 x x x x x x -0.48 x x x x x x x x x x x x x -0.60 x x x

44 x x x -0.36 x -0.48 x x x x -0.63 x -1.46 x x x x x -1.25 x x x x x

51 x x x x x x x x -1.81 x x x x x x x x x x x x x x x

65 x x x x x x x -1.81 x x -2.04 x x x x x x x x x x x x x

68 x x x x x x x x x x -1.80 x x x x x x x -0.32 x x x x x

69 x x x x x x -0.63 x -2.04 -1.80 x x x x x x x -0.96 x -0.38 x x x x

71 x x x x x x x x x x x x x x x x x x x x x x x -0.69

74 x -0.41 x -0.27 -0.33 x -1.46 x x x x x x x -0.40 x x x x x x -0.27 x x

76 x x x x x x x x x x x x x x x x -0.77 x x x x x x x

77 x -0.74 x x x x x x x x x x -0.40 x x x -2.31 x x x x -2.57 -0.77 x

79 x x x x x x x x x x x x x x x x x x x x x x x -0.98

154 x x x x x x x x x x x x x -0.77 -2.31 x x x x x x x x x

158 x x x x x x x x x x -0.96 x x x x x x x x x x x x x

163 x x x x x x -1.25 x x -0.32 x x x x x x x x x -0.59 x x x x

182 x x x x x x x x x x -0.38 x x x x x x x -0.59 x x x x x

191 -0.78 x -0.84 -0.44 x -0.60 x x x x x x x x x x x x x x x x x x

195 x -1.05 x -0.24 x x x x x x x x -0.27 x -2.57 x x x x x x x x x

196 x x x x x x x x x x x x x x -0.77 x x x x x x x x x

*191 x x x x x x x x x x x -0.69 x x x -0.98 x x x x x x x x

 

 

 



 

 

 

Table S2. Electrostatic interaction energies of residue pairs: blue – intra-subunit, red inter-subunit interactions. 

A. Crystal structure 

22 32 42 46 47 48 50 62 66 75 80 139 143 147 183 184 187 188 199 206 209 46 48 62 65 72 75 165 184 186

22 x x x x x x x x x x x x x x x x x x x x -53.46 x x x x x x x x x

32 x x x x x x x x x x -7.52 x x -83.54 x x x x -8.13 x x x x x x x x x x x

42 x x x x x x x x x x x x x x x -18.13 x x x x x x x x x x -46.21 x x x

46 x x x x x x x x x x x x x x x -60.67 x -15.88 x x x x -20.94 x x x x x x x

47 x x x x x x x x x -83.88 x x x x x x x x x x x x x x x x x x -76.63 x

48 x x x x x x x 1.60 x x x x x x x x x x x x x x x x x x x x x x

50 x x x x x x x x x x x x x x x x x x x x x x -10.85 -2.09 x x x x x x

62 x x x x x 1.60 x x x x x x x x x x x x x x x x x x x x x x x x

66 x x x x x x x x x x x x x x x x x x x x x x x x x x x -40.40 x -33.87

75 x x x x -83.88 x x x x x x x x x x x x x x x x x x x x x x x x x

80 x -7.52 x x x x x x x x x x x x x x x x x x x x x x x x x x x x

139 x x x x x x x x x x x x -17.32 x x x x x x x x x x x x x x x x x

143 x x x x x x x x x x x -17.32 -3.66 x x x x x -14.95 -3.66 x x x x x x x x x

147 x -83.54 x x x x x x x x x x -3.66 x x x x x x x x x x x x x x x x x

183 x x x x x x x x x x x x x x x x x x x x x x 2.17 x x x x x x x

184 x x -18.13 -60.67 x x x x x x x x x x x x x x x x x x x x 3.21 x x x x x

187 x x x x x x x x x x x x x x x x x x x x x x x x x -8.21 -88.92 x x x

188 x x x -15.88 x x x x x x x x x x x x x x x x x x x x x x x x x x

199 x -8.13 x x x x x x x x x x x x x x x x x x x x x x x x x x x x

206 x x x x x x x x x x x x -14.95 x x x x x x x x x x x x x x x x x

209 -53.46 x x x x x x x x x x x -3.66 x x x x x x x x x x x x x x x x x

46 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

48 x x x -20.94 x x -10.85 x x x x x x x 2.17 x x x x x x x x x x x x x x x

62 x x x x x x -2.09 x x x x x x x x x x x x x x x x x x x x x x x

65 x x x x x x x x x x x x x x x 3.21 x x x x x x x x x x x x x x

72 x x x x x x x x x x x x x x x x -8.21 x x x x x x x x x x x x x

75 x x -46.21 x x x x x x x x x x x x x -88.92 x x x x x x x x x x x x x

165 x x x x x x x x -40.40 x x x x x x x x x x x x x x x x x x x x x

184 x x x x -76.63 x x x x x x x x x x x x x x x x x x x x x x x x x

186 x x x x x x x x -33.87 x x x x x x x x x x x x x x x x x x x x x

 

B. Equilibrated structure (WT) 

22 32 42 46 47 48 50 62 66 75 80 139 143 147 183 184 187 188 199 206 209 46 48 62 65 72 75 165 184 186

22 x x x x x x x x x x x x x x x x x x x x -90.21 x x x x x x x x x

32 x x x x x x x x x x 0.03 x x -98.53 x x x x -9.99 x x x x x x x x x x x

42 x x x x x x x x x x x x x x x -25.49 x x x x x x x x x x -75.11 x x x

46 x x x x x x x x x x x x x x x -60.83 x -65.85 x x x x -4.50 x x x x x x x

47 x x x x x x x x x -92.02 x x x x x x x x x x x x x x x x x x -51.47 x

48 x x x x x x x -0.23 x x x x x x x x x x x x x x x x x x x x x x

50 x x x x x x x x x x x x x x x x x x x x x x -3.33 -1.92 x x x x x x

62 x x x x x -0.23 x x x x x x x x x x x x x x x x x x x x x x x x

66 x x x x x x x x x x x x x x x x x x x x x x x x x x x -67.06 x -30.61

75 x x x x -92.02 x x x x x x x x x x x x x x x x x x x x x x x x x

80 x 0.03 x x x x x x x x x x x x x x x x x x x x x x x x x x x x

139 x x x x x x x x x x x x -7.56 x x x x x x x x x x x x x x x x x

143 x x x x x x x x x x x -7.56 -26.83 x x x x x -6.34 -29.14 x x x x x x x x x

147 x -98.53 x x x x x x x x x x -26.83 x x x x x x x x x x x x x x x x x

183 x x x x x x x x x x x x x x x x x x x x x x -1.96 x x x x x x x

184 x x -25.49 -60.83 x x x x x x x x x x x x x x x x x x x x 4.47 x x x x x

187 x x x x x x x x x x x x x x x x x x x x x x x x x -17.99 -80.60 x x x

188 x x x -65.85 x x x x x x x x x x x x x x x x x x x x x x x x x x

199 x -9.99 x x x x x x x x x x x x x x x x x x x x x x x x x x x x

206 x x x x x x x x x x x x -6.34 x x x x x x x x x x x x x x x x x

209 -90.21 x x x x x x x x x x x -29.14 x x x x x x x x x x x x x x x x x

46 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

48 x x x -4.50 x x -3.33 x x x x x x x -1.96 x x x x x x x x x x x x x x x

62 x x x x x x -1.92 x x x x x x x x x x x x x x x x x x x x x x x

65 x x x x x x x x x x x x x x x 4.47 x x x x x x x x x x x x x x

72 x x x x x x x x x x x x x x x x -17.99 x x x x x x x x x x x x x

75 x x -75.11 x x x x x x x x x x x x x -80.60 x x x x x x x x x x x x x

165 x x x x x x x x -67.06 x x x x x x x x x x x x x x x x x x x x x

184 x x x x -51.47 x x x x x x x x x x x x x x x x x x x x x x x x x

186 x x x x x x x x -30.61 x x x x x x x x x x x x x x x x x x x x x

 

 

 

 

 

 

 



 

 

C. V43A+I74V 

22 32 42 46 47 48 50 62 66 75 80 139 143 147 183 184 187 188 199 206 209 46 48 62 65 72 75 165 184 186

22 x x x x x x x x x x x x x x x x x x x x -93.02 x x x x x x x x x

32 x x x x x x x x x x 0.05 x x -99.60 x x x x -10.53 x x x x x x x x x x x

42 x x x x x x x x x x x x x x x -25.74 x x x x x x x x x x -77.03 x x x

46 x x x x x x x x x x x x x x x -61.93 x -66.31 x x x x -4.05 x x x x x x x

47 x x x x x x x x x -92.36 x x x x x x x x x x x x x x x x x x -47.73 x

48 x x x x x x x -0.23 x x x x x x x x x x x x x x x x x x x x x x

50 x x x x x x x x x x x x x x x x x x x x x x -2.89 -1.78 x x x x x x

62 x x x x x -0.23 x x x x x x x x x x x x x x x x x x x x x x x x

66 x x x x x x x x x x x x x x x x x x x x x x x x x x x -66.04 x -30.46

75 x x x x -92.36 x x x x x x x x x x x x x x x x x x x x x x x x x

80 x 0.05 x x x x x x x x x x x x x x x x x x x x x x x x x x x x

139 x x x x x x x x x x x x -7.22 x x x x x x x x x x x x x x x x x

143 x x x x x x x x x x x -7.22 -27.36 x x x x x -6.82 -29.30 x x x x x x x x x

147 x -99.60 x x x x x x x x x x -27.36 x x x x x x x x x x x x x x x x x

183 x x x x x x x x x x x x x x x x x x x x x x -1.98 x x x x x x x

184 x x -25.74 -61.93 x x x x x x x x x x x x x x x x x x x x 4.65 x x x x x

187 x x x x x x x x x x x x x x x x x x x x x x x x x -17.33 -80.90 x x x

188 x x x -66.31 x x x x x x x x x x x x x x x x x x x x x x x x x x

199 x -10.53 x x x x x x x x x x x x x x x x x x x x x x x x x x x x

206 x x x x x x x x x x x x -6.82 x x x x x x x x x x x x x x x x x

209 -93.02 x x x x x x x x x x x -29.30 x x x x x x x x x x x x x x x x x

46 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

48 x x x -4.05 x x -2.89 x x x x x x x -1.98 x x x x x x x x x x x x x x x

62 x x x x x x -1.78 x x x x x x x x x x x x x x x x x x x x x x x

65 x x x x x x x x x x x x x x x 4.65 x x x x x x x x x x x x x x

72 x x x x x x x x x x x x x x x x -17.33 x x x x x x x x x x x x x

75 x x -77.03 x x x x x x x x x x x x x -80.90 x x x x x x x x x x x x x

165 x x x x x x x x -66.04 x x x x x x x x x x x x x x x x x x x x x

184 x x x x -47.73 x x x x x x x x x x x x x x x x x x x x x x x x x

186 x x x x x x x x -30.46 x x x x x x x x x x x x x x x x x x x x x
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