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SI Materials and Methods 

Plant materials and reporter constructs. The clv3-2 allele in the La-er background has 

been previously described [24,25].  The wus-1 and wus-6 alleles have been described 

previously [16]. The AHK4pro::GFP line in Columbia (Col-0) background has been 

previously described [26]. The WUSpro::dsRED-N7 lines have been previously described 

[10].  The WUSpro::WUS-2xYFP construct in the T-DNA vector pMLBART [27] 

conferring Basta resistance in plants is composed of 3.33 kb of upstream regulatory 

sequence from the WUS gene fused to the WUS coding region and 2 tandem copies of 

YFP followed by the N7 nuclear localization sequence [28] with 1.31 kb of WUS 3’-

untranslated sequence.  The WUSpro::mTFP-ER and CLV3pro::mTFP-ER reporters are 

composed of 4.4 kb of upstream regulatory sequence and 1.5 kb 3’-untranslated sequence 

for WUS and 3.3 kb upstream regulatory sequence and 1.5 kb 3’-untranslated sequence 

for CLV3 in the binary vector pMOA33 conferring kanamycin resistance. For double 

transgenic plants with various reporters, WUSpro::WUS-2xYFP was crossed into 

respective backgrounds as previously described [29].  For the construction the LOGpro 

reporter lines, 4.5Kb of the up- stream promoter region and 1.5Kb of sequence 

downstream of the ORF stop codon were cloned into the T-DNA vector pMOA 

conferring hygromycin resistance. Into these constructs a 2x version of Ypet with a N7 



(2xYpet-N7) nuclear localization sequence inserted between the various LOG gene 

regulatory regions. Reporter lines were subsequently crossed into mutant backgrounds. 

Gene expression analysis. RNA was harvested from shoot apical tissue (~0.5 cm from 

the shoot apex) using the RNeasy Mini Kit (Qiagen). cDNA was synthesized from 1 mg 

DNase1 (invitrogen) treated total RNA. Quantitative real-time PCR was done using 

SYBR green (Quantance, SensiMix). Data was analyzed using the Ct method 

normalized to tubulin expression.  Primer sequences available upon request. 

Plant growth and hormone treatment conditions.  Plants were grown as previously 

described [29].  Cytokinin treatments with N6-benzylaminopurine (BAP; Sigma–Aldrich 

Co., St. Louis, MO) were performed as previously described [10].  For analysis of floral 

organ number, plants were treated 2 times at one-week intervals at the onset of bolting. 

Flowers of at least 10 plants were counted for wus mutant floral organ number.  We 

counted organs within each flower until the SAM terminated.  At least two independent 

biological experiments were performed for each genotype.  For the analysis in Figure 5, 

clv3-2 mutants and wild type plants in were treated once every third day.  Phenotypic 

analysis was performed on soil.  We tested whether exogenous auxin could influence the 

AHK4 expression domain by testing the responsiveness of the AHK4pro::GFP reporter in 

shoots and roots of intact plants to treatment with 10M or 25M of both indole-3-

butyric acid (IBA, Sigma) or the synthetic auxin 2,4-D (Sigma) in liquid MS media for 

12 hours.  In addition, we cultured root and shoot explants for 24hrs on MS plates 

containing 1mM, 100M, or 10M IBA.  In Figure S6, tissue explants were cultured on 

MS plates for 6 days with 500g/L of the synthetic auxin 2,4-D.  Imaging was performed 



as previously described [29].  Membranes were stained with FM4-64 dye unless 

otherwise noted [29].   

 

Imaging conditions.  Callus and regenerating shoots were imaged directly on respective 

media. For each marker line, at least 10 samples were imaged to confirm that observed 

patterns were representative of respective markers. The lipophilic dye FM4-64 

(Molecular Probes) was used at a concentration of 10 µg/ml to demarcate cell 

membranes.  All imaging was done using a Zeiss 510 Meta laser scanning confocal 

microscope with a 10x air objective, 63x water dipping lens, or a 40x water dipping lens 

using the multi-tracking mode.  Specific sets of filters used for the respective markers 

were similar to those already described [10]. Projections of confocal data were exported 

using Zeiss LSM software. Scanning electron microscopy was performed as described 

previously [29].   

 

 



 

Figure S1. qRT-PCR of AtLOG in shoot apical tissue. (A) Relative expression levels 

of the six AtLOG genes in the La-er or the clv3-2 mutant backgrounds.  

 

Figure S2.  Distribution of cytokinin synthesis, perception, and signaling relative to 

WUS within the SAM.  (A) Longitudinal view of WUSpro::mTFP-ER reporter, (B) 

CLV3pro::mTFP-ER reporter. (C) Top view of WUS (WUSpro::WUS-2xVenus, red)  and 

(D) TCSpro::GFP (green) in the SAM and floral meristem. In C-D PIN1pro::PIN1-GFP 

(blue) marks cell membranes. Scale bar represents 50µm in A, B and 20µm in C, D. 

 



 

 

 

Figure S3. Loss of meristem function for gain of function CLV3. 

(A,B) show simulations for the model for the CLV3 gain of function. The plots display 
WUS, CLV3, Cytokinin signaling (phosphorylated B Type ARR’s ‐‐ Bp) and Cytokinin 
along the apical‐basal axis in wild type (A) and the CLV3 gain of function (B).  In B, 
the green curve for CLV3 represents the promoter activity (see SIAppendix). 

 

 

 

 

 

 

 



 

 
 

 

Figure S4.  Exogenous cytokinin rescues floral meristem termination in the 

hypomorphic wus-6 promoter insertion mutant. (A) Mock treated wus-1 mutant 

flower missing inner floral organs.  (B) Cytokinin treated wus-1 flowers have 

supernumerary outer organs but still lack inner organs. (C) Mock treated wus-6 mutant 

flower missing inner floral organs.  (D) Cytokinin treatment leads to a full complement of 

loral organs in wus-6 flowers. Scale bars represent 1mm in A, B, D and 0.5mm in C. f

 

 



0 5 10 15 20 25 30
0

50

100

150
CLV3

 

 

0 5 10 15 20 25 30
0

10

20

30

Cell Number

C
o

n
ce

n
tr

at
io

n
 A

.U

WUS

WT
CLV3

 

Figure S5.  Model simulations for clv3 loss-of-function. clv3 loss-of-function 

simulations (blue=functional CLV3, red=clv3 loss-of-function). The upper plot shows 

simulations of CLV3 concentration along a column of cells (apical cell=0, basal most 

cell=30). The plots represent CLV3 promoter activity (see SIAppendix). The lower plot 

shows simulations of WUS concentration along the same column of cells. 

 

 

 

 



 

Figure S6.  Cytokinin treatment enhances carpel number phenotypes in the clv3-2 

background. Scanning electron images of wild type mock-treated (A), wild type 

cytokinin-treated (B), clv3-2 mutant mock-treated (C), and clv3-2 mutant cytokinin-

treated (D) carpel number.  Cell size in clv3-2 mock (E) and clv3-2 cytokinin treated (F) 

SAMs.  Abnormal grow in the center of cytokinin-treated clv3-2 mutant gynoecium (G) 

and at its base near the pedicel (H). 

 



 

Figure S7.  Cytokinin receptor and WUS expression in the clv3-2 mutant.  (A-C) top 

down and (D-F) transverse views of WUSpro::DsRed-N7 (red) (A), AHK4pro::GFP (green) 

in wild type.  (G-I) Lateral expansion of WUSpro::DsRed-N7 (red) (A), AHK4pro::GFP 

(green) in the clv3-2 mutant.  (J-L) Longitudinal section of WUSpro::DsRed-N7 (red), 

AHK4pro::GFP (green) and AHK4pro::GFP; WUSpro::DsRed-N7 in a clv3-2 mutant SAM. 

(M-O) Longitudinal section of WUSpro::DsRed-N7 (red), AHK4pro::GFP (green) and 

AHK4pro::GFP; WUSpro::DsRed-N7 in clv3-2 mutant floral meristems.  Scale bars 

represent 50µm. 

 



 

Figure S8.   Modeling results for WUS expression compared to cytokinin signaling in 

wild type and for loss of function CLV3 for the negative cytokinin biosynthesis 

model . (A,B) show simulations for the model in which we assume WUS negative 

feedback on cytokinin synthesis, assuming a greater affinity of Type-B ARR to the WUS 

promoter (greater efficiency of WUS induction by cytokinin).  The plots display WUS, 

CLV3, Cytokinin signaling (phosphorylated B Type ARR’s -- Bp) and Cytokinin along 

the apical-basal axis in wild type (A) and the clv3 loss of function mutant (B) (here 

CLV3 represents promoter activity). (C) and (D) show cartoons of the regulatory network 

involving Type-A ARR, Type-B ARR and WUS, suggesting that in (D), low levels of 

cytokinin could potentially still maintain WUS, since WUS is strongly induced by 

cytokinin thereby keeping Type-A ARR low, which in turn allows WUS to be induced. 

WT (wild type). 
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Figure S9.   Modeling results for a case where a cytokinin degradative enzyme is 

expressed in the L1 layer of the SAM maintenance. (A,B) show simulations for a 

model where we have expressed a cytokinin degradative enzyme, such as a member of 

the CYOTKININ DEHYDROGENASE/OXIDASE family, in the L1 layer of the SAM.  

The plots show WUS, CLV3, cytokinin, and cytokinin signaling (phosphorylated type-B 

ARR) in a wild type and L1 specific overexpression of a CKX enzyme. In (A) the proper 

apical-basal patterning occurs. When CKX is expressed in the same cell producing the 

apical cytokinin signal, the plot for cytokinin signaling, WUS, and CLV3 are no longer 

maintained. The simulation in (B) mimics a SAM termination phenotype as observed for 

loss of log function in rice or multiple loss of log function in Arabidopsis. 

 

 

 

 

 

 



Video Captions: 

Video S1 Movie of growth and division, displaying the maintenance of CLV3, WUS, 

Type A ARR & Type B ARR spatial profiles, assuming all cells express cytokinin 

receptors. 

Video S2 Movie of growth and division, displaying the maintenance of CLV3, WUS, 

Type A ARR & Type B ARR spatial profiles,  as well tracking number of cell divisions 

and the receptor region, assuming a cytokinin receptor profile which is propagated by the 

tochastic receptor model. s

 

 



Computational Supplement

Introduction

In the supplement, we outline details of the computational model. In particular we will

discuss in order,

• Cytokinin Perception Spatial Circuit Dynamics

• Typical Timescales for Perturbations.

• Cell Growth and Division Rules.

• Combining Simulation of Gene Expression and Cell Growth.

• CLV3, cytokinin dependent growth rate.

• Cytokinin Receptor Domain Propagation Model.

• Guide to interpreting movie 2

• Cytokinin biosynthesis feedback models.

• Robustness Studies.

• CLV3 loss/gain of function.

Cytokinin Perception Spatial Circuit Dynamics

In an earlier publication [1] we have described a simplified model of the signaling and tran-

scriptional network through which cytokinin signaling induces WUS expression. We also

refer the reader to the references in [2], for a review of cytokinin signaling.
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Figure 1: A schematic of the cytokinin perception signaling-genetic network. AHPT–
Arabidopsis histidine phosphotransfer protein, B–Type B Arabidopsis Response Regula-
tor(ARR), A–Type A Arabidopsis Response Regulator(ARR), WUS, CLV3, Sstemcells. The
red star indicates that the Sstemcells signal also regulates a signal which makes cells com-
petent to express CLV3(see Equation 1)

Referring to the schematic Figure M1, we assume that the signal which phosphorylates

the histidine transfer proteins (AHPTs), is a product of the cytokinin and the cytokinin

receptor concentrations within a cell. The signal is transduced by AHPTP and further

phosphorylates the Type B ARRs. BP is transcriptionally active and activates transcription

of Type A ARRs, as well as WUS. The Type A ARRs negatively regulate signaling, giving

rise to a negative feedback loop. WUS suppresses transcription of the Type A ARRs, which

gives a positive feedback loop (these two consecutive negative feedbacks give a positive

feedback). WUS activates a diffusible signal, Sstemcells, which activates CLV3, the latter

represses WUS. In our earlier model [1] we had also explicitly included CLV1, but here we

have simplified the network by retaining only the essential WUS-CLV3 feedback loop for

simplicity. In addition to the above, we extend our previous model by explicitly introducing

3 new diffusible species which are experimentally motivated:(1) Observations suggest (see
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Figure S2A,B from the main text) that the first 3-4 cells at the apical region express CLV3,

we implement this in our model in the following way: the cell at the very tip of the shoot apex

expresses a signal, CLV3signal, which diffuses down into the lower layer of cells, and which

we assume makes cells competent to express CLV3. Since the gradient of this signal falls of

exponentially 1, only the top few cells can express CLV3. (2) A stem cell maintenance signal

Sstemcells, which emanates from the WUS region, and which activates CLV3 as well as the

CLV3signal. (3) Cytokinin is assumed to be produced by the first cell, and simply diffuses

into the lower layers. In the model, cytokinin biosynthesis does not depend on WUS activity.

However, in a later section, we have explored the consequences of making the biosynthesis

of cytokinin regulated by the WUS, through the Sstemcell signal. In this section, where the

template is assumed to be fixed, cells express cytokinin receptors, with a distribution such

that cells 5-18 express high levels of cytokinin receptors(this follows from our observations

of the AHK4 receptor [1]) 2. Later when we consider growth and cell division, we discuss

a dynamic model to propagate the receptor domain. We now cast these assumptions into a

mathematical form such that they describe the protein levels within each of the cells of the

cellular template, which we have chosen to be the apical-basal slice of the shoot meristem(see

Figure 1 from the main text). Within each cell we solve for the following circuit, where the

index i is the cell index, which runs from 1 : N(at the moment N is fixed, i.e we consider a

static template, later we add growth and cell division to this template)

d[AHPTP ]i
dt

= (
[signal]i[AHPT ]i
Kh1 + [AHPT ]i

) − vh1[AHPTP ]i
Kh2 + [AHPTP ]i

,

d[BP ]i
dt

= (
[AHPTP ]i[B]i

K1 + [B]i
)(

1

1 + α[A]i
) − v1[BP ]i

K2 + [BP ]i
,

d[A]i
dt

=
a0 + a1[BP ]i

1 + a1[BP ]i + a2[WUS]i
n − γa[A]i,

d[WUS]i
dt

=
b0 + b1[BP ]i

1 + b1[BP ]i + b2[CLV 3]i
− γw[WUS]i

1The profile has a typical length scale of
√

D/γ, where D is the diffusion constant and γ is the degradation
rate

2We have also considered a simpler situation where all cells express the same levels of cytokinin receptors.
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d[CLV 3signal]i
dt

= α1

ˆa(1)ds[Sstemcells]i
1 + ds[Sstemcells]i

− γclvs[CLV 3signal]i

+DCLV 3signal([CLV 3signal]i+1 + [CLV 3signal]i−1 − 2[CLV 3signal]i)

d[CLV 3]i
dt

= α2

[
d1[CLV 3signal]i

1 + d1[CLV 3signal]i

] [
d2[Sstemcells]i

1 + d2[Sstemcells]i

]
− γclv[CLV 3]i

+DCLV 3([CLV 3]i+1 + [CLV 3]i−1 − 2[CLV 3]i)

d[Sstemcells]i
dt

= α3
dw[WUS]i

1 + dw[WUS]i
− γsc[Sstemcells]i

+DSstemcells([Sstemcells]i+1 + [Sstemcells]i−1 − 2[Sstemcells]i)

d[Cyt]i
dt

= ˆa(1)Cr − γcyt[Cyt]i + DCyt([Cyt]i+1 + [Cyt]i−1 − 2[Cyt]i)

(1)

where the [signal] = [Cyt][receptor], which we assume to be expressed at some level in

all cells; ˆa(1) = 1 only for the first cell(i = 1), and ˆa(1) = 0 for all i �= 1. The total

amount of AHPT and Type B ARR in their two different forms obey, AHPT + AHPTP =

10, B + BP = 10. We refer the reader to [1], which discusses the first four equations for

[AHPTP ], [BP ], [A], [WUS] 3, however for making this supplement self-contained, we briefly

describe each term.

• AHPT Histidine phosphotransfer proteins AHPT are phosphorylated by the signal

([Cyt][receptors]), to the state AHPTP with the total number of proteins conserved

AHPT + AHPTP = 10.

3Throughout we assume transcription factor dynamics is modeled based upon a thermodynamic model
for transcription [5, 6, 7, 8], which typically gives gene regulatory functions as sigmoidal shaped curves (see
above equations) We also model transcription and translation as one combined process. The following simple
example will illustrate how sigmoid functions arise in transcriptional dynamics. Let x be the concentration
of a transcription factor which transcribes for a gene G, which exists in two states g0–open, g1–bound by
x. These represent the relative occupancy of the gene, g0 + g1 = 1. We assume x binds and unbinds at a
high rate, much faster than the transcription process itself. Then assuming thermodynamic equilibrium for
the reaction, x + g0 ⇀↽ g1, with k−1, k1 as the backward and forward rates, with the equilibrium constant
K = k1

k−1
, we obtain g1 = Kg0x, which from the conservation equation g0 + g1 = 1, gives the fraction of the

occupied gene g1. The transcription rate is assumed to be proportional to this fraction, since it represents
genes being occupied and ready to transcribe. Hence the transcriptional rate T is,

T ∝ Kx

1 + Kx
. (2)
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• BP Type B ARRs (response regulators) are phosphorylated by AHPTP , to BP with

the total number of proteins conserved B + BP = 10. In the equations for AHPTP ,

BP , we have assumed enzymatic dephosphorylation as well as phosphorylation, and

hence we use Michaelis Menten forms for the equations.

• Type A ARR The Type A ARRs are assumed to be transcribed by a target of

cytokinin signaling which we will assume to be Type B ARR, and also suppressed by

WUS, with multiple WUS binding sites on As promoters [3].

• WUS transcription is promoted by a cytokinin-regulated transcription factor which

here we model as a B Type ARR BP . BP could be replaced by any transcription factor

activated by cytokinin that promotes transcription of WUS and Type A ARRs.

• [CLV3signal] We assume that this is a diffusible signal that is produced only by the

first cell ( ˆa(1))and is further regulated transcriptionally by Sstemcells, the diffusible

signal produced by WUS. CLV3signal diffuses into the lower layers, and makes cells

competent to express CLV3. Since it is only produced in the top cell, its gradient

falls off exponentially, and hence only the first few cells which sense reasonable levels

of [CLV3signal] end up expressing CLV3. This is is further implemented as described

next,

• [CLV3] In the equation for d[CLV 3]
dt

, the first term is a product of two terms: the

first term , d1[CLV 3signal]i
1+d1[CLV 3signal]i

makes cells competent to express CLV3, the second term

d2[Sstemcells]i
1+d2[Sstemcells]i

describes activation of the CLV3 promoter by the stem cell signal,

Sstemcells. Hence [CLV3signal], which is strong only within the top 3-4, cells guaran-

tees that [CLV3] falls off for cells further away from the apical tip. This implementation

is analogous to assuming an AND type of gate for the cis-regulatory logic for stem cells

producing CLV3. Another option would have been to assume a heteromeric term like

[CLV 3signal][Sstemcells] acting as an activator, however, with the lack of any evi-

dence, we used the simplest possible assumption.
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• [Sstemcells] We assume that WUS activates a diffusible signal [Sstemcells] that main-

tains stem cells. The latter is assumed to activate CLV3 as well as [CLV3signal](as

discussed above).

• [Cyt] We assume that the first cell produces cytokinin at a fixed rate(later we allow

for positive/negative regulation by [Sstemcells], which would be assuming that WUS

somehow regulates cytokinin biosynthesis).

• For the diffusible species, [CLV 3signal], [Sstemcells], CLV 3 and Cyt, the coefficients

DCLV 3signal, DSstemcells, DCLV 3, DCyt are passive transport rates.

The above equations are solved with appropriate boundary conditions. We assume zero flux

boundary conditions for all species except for cytokinin in the first cell where in simulations

which correspond to treatment by cytokinin, we assume a fixed external concentration of

cytokinin. We use a fourth order Runge-Kutta numerical solver with a small fixed step size

to integrate the above equations until a steady state (dx
dt

= 0) is reached. We then obtain

the profiles of the various species as a function of cell number. The parameter values are

displayed in Table M1.

The above equations are solved for an initial template consisting of 30 cells, until they reach

steady state. The resulting expression levels of all the species are shown in Figure M2A,

B, for the two cases respectively, (i) all cells express equal amounts of receptors, (ii) cells

express receptors according to a specified pattern (shown in the receptor profile, Figure

M2C). The latter is motivated by images of the AHK4 receptor domain which shows strong

expression overlapping the WUS domain [1]. From the figures, we notice that CLV3 (Please

note that in our model, since we do not explicitly compute the mRNA levels, this means

that the protein level is a read out of the promoter activity. In particular model simulations

of a CLV3 loss-of-function/gain-of-function mutant, is implemented by having the CLV3

protein bind with less/more strength respectively to the WUS promoter (lower/higher b2)).

CLV3signal and cytokinin are high in the first 4-5 cells and then fall off. The combination
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Figure 2: Panel A shows the spatial profile of network components as a function of
cell number, apical zone(extreme left), for the case with a constant receptor distribu-
tion(corresponding to receptor = 1 for all cells. Please note that the curves for signal and
Cyt overlap.). Panel B shows the profile for the network components, which was generated
by assuming the specific form of the receptor distribution shown in Panel C.

of these profiles determines the WUS profile, which then itself feeds back to further shape

the CLV3 profile through the Sstemcells signal. This self-organized network maintains the

WUS profile as seen. Further the Type A ARRs surround the WUS domain, and cytokinin

signaling (phosphorylated Type B ARRs, Bp) overlap with WUS (as reported earlier [1]). A

further point to note is that the WUS pattern does not vary very much for the above two cases

considered. The reason is the following. Allowing the stem cells to express receptors does not

allow WUS to come on in these cells(which one would expect since cytokinin concentration

is high here), since CLV3 is high and would repress WUS. Allowing basally located cells to

express receptors would not influence WUS pattern all that much, since cytokinin is at such

low levels that WUS induction would be very low. Hence the ”wild type” pattern is fairly

robust to the receptor distribution.
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Typical Time Scales for Perturbations

Here we look at typical time scales for perturbations to the spatial profiles of the network

components, i.e how long does it take for the spatial pattern to be established after a pertur-

bation. We can first analyze typical time scales of signaling and gene expression for a much

simpler network. Consider the cytokinin perception network, but which is ”disconnected”

to the CLV3 feedback loop (by removing repression of WUS by CLV3), thereby leading to

a loss of communication between cells. We first study the effect of perturbing the level of

cytokinin on the levels of [AHPTP ], [BP ], [A], [WUS]. In Figure M3A, cytokinin is rapidly

increased to a steady state level within a time scale of � 30mins, which results in the rapid

phosphorylation of [AHPT ] within approximately the same time scale. [B] then gets phos-

phorylated which leads to transcription of both [A], [WUS]. However, since [A] negatively

feeds back on signaling, i.e prosphorylation of [B], the temporal profile of [BP ] is affected

by the rate of gene expression of [A]. Moreover, since [WUS] negatively regulates [A], we

first get a rapid increase in [A] (since [BP ] is transcribing it), followed by a decrease. The

time scale for this process is � 4Hrs. Hence signaling and gene expression combined take

2−4Hrs. One would expect that with diffusion, where cells can communicate their position

and adjust expression of the network components, these times scales could vary much more.

Indeed, in Figure M3 Panel B, we display time scales to establish the same final pattern

of network components, considering a perturbation in each cell one at a time. Specifically,

each simulation consists of perturbing a given cell by 25% random variation in network

components with respect to its steady state value (keeping the values the same in other

cells as their steady state values), and then measuring the time for the same final steady

state pattern to reestablish. This is repeated several times for each cell, and then for cells

between 3 − 25. The cells at the apical zone show considerably higher time scales to settle

to the same final pattern as compared to the cells in the basal zone because the pattern of

many of the network components are higher there and hence much more adjustment has to

be made. We have also studied the time scale dependence on the variation of parameters.
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Some of the critical parameters which appear to regulate the time scales are the cytokinin

production rate Cr, the strength of repression of WUS by CLV3 b2, and most importantly the

passive transport coefficient Di, i = 1 : 4, for the various diffusible signals. Cr, b2 determine

how fast WUS expression can be established within a cell, whereas Di determine how fast

local changes can be communicated across the cells. To see how Di determines the speed

of establishing a stable pattern after a significant perturbation, we performed the following

simulation. We assume that Cr = 0.1 is at a very low level, which would correspond to

decreasing the cytokinin production rate in the first apical cell, thereby leading to a loss

of WUS expression thereby simulating meristem termination (Supplementary Information -

Figure S9). Starting from these initial conditions we set Cr = 1, and simulate the recovery

of the final pattern. In Movie M1 we plot the values of [WUS]–red, [CLV 3]–blue, [Cyt] –

black, to show the dynamics of how the recovery takes place. As cytokinin production is

restarted, WUS begins to get expressed in the apical cells. This leads to increase in CLV3,

which pushes back WUS and the pattern starts to get refined. The time scale is � 19hrs,

which is longer compared to earlier perturbations. Consider now a new model in which we

increase the passive transport rates of all diffusible signals by a factor of 5. Here in this new

model, we first set Cr = 0.1(simulating loss of meristem), followed by Cr = 2.5(simulating

the wild type for this new model), then a similar recovery can be seen in Movie M2, with

a lower time scale of � 12Hrs. Hence the time scales for large perturbations is parameter

dependent, and still lower than the typical 24 − 36Hrs times scales for division.

Growth and Cell Division

We now explicitly include growth in each of the cells of the above template (we always start

our initial template with 30 cells) Each cell’s vertical wall is assumed to grow exponentially,

dL
dt

= λL. Here given that cells divide over a period of 24 − 36hrs, and within this time,

the cell length doubles, λ � ln2
36

− ln2
24

hr−1. In our simulations we have used the value of

λ = 1, which would correspond to rescaling the simulation time. In a later section we
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Figure 3: Panel A shows the temporal profile of the single cell cytokinin perception network
components as a function of time, for the case when WUS is not suppressed by CLV3. Panel
B shows typical timescales for perturbations of the network components by ±25%, for each
cell, as well as the variation in times scales for a given cell.

make the rate of cell growth dependent on CLV3 and cytokinin. The initial template of

cells has been chosen with an average length, L = 5 (for ease of visualizing the movies).

Each cell has associated with it a length Ld at which it is next going to divide, which

is approximately when it reaches twice its initial size, Li(its size when it was formed on

division), hence Ld � 2Li. To obtain Ld, we add to Li, a length sampled from a Gaussian

distribution with σ = .2, centered at Li = 5. Hence, cells divide asynchronously, since

they each reach their threshold for divisions at different times. Upon division, daughter

cells partition their lengths into approximately half the original length, with a s.d. of 10%.

The cell contents are divided as follows. A given species concentration c0, is divided into

approximately half with a s.d. of σc = 25%. In particular assuming that for the daughter

cells with length l1, l2 the species concentration is c1, c2, if c2 = σcc0, then c1 = ( 1
t1
− σct2

t1
)c0,

where t1 = l1/(l1 + l2), t2 = l2/(l1 + l2). This is obtained if we assume that upon division,

the total number of molecules is conserved. This is then implemented for all species. For the

receptors, we assume that they are partitioned equally between the two cells upon division.

For the details of the receptor domain propagation model, see below. In addition we assume
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that the first two cells at the tip in our template do not divide, since in reality they represent

the cells from the L1 and L2 layer of cells, which are known to divide only anticlinally.

Combining Simulation of Gene Expression and Cell Growth

Here we describe how the cell growth schedule is combined with solving the steady state

profiles of the network components. Based upon our analysis of typical time scales for

establishing a pattern after a perturbation, we make the assumption that the pattern is

established much faster than the time it takes for cell growth to occur. This as we have shown

is not always true, since large perturbations could take significantly longer and could begin

to approach the cell division time scales. However, we make this assumption to simplify

the simulations. Since gene expression occurs faster with respect to growth, it is almost

always in steady state. From a simulation point of view, therefore, we can separate the

processes of growth and gene expression. We are assuming that as the cell grows, proteins

are produced quickly during the entire time period when the cell is enlarging. Hence in our

implementation of the growing SAM, we assume that concentration can be held fixed during

the simulation of growth. The simulation of the growing SAM follows the following steps,

1. Starting from an initial non-growing cellular template we solve the differential equations

(Eq. 1) for the various species until they reach steady state levels. 2. The cells are then

made to grow according to the growth rate as described in the text. During growth all cell

constituent concentrations are held fixed. 3. If a cell is about to divide, then we stop all

growth, and divide that particular cell. We then partition the initial concentration of that

cell into its two daughters by the rule given in the text. The new steady state concentrations

for all cells are then found by simulating the differential equations for all species. 4. Growth

then resumes, once again keeping concentrations fixed until the next division.

Supplementary Movie 1 shows such a simulation of growing and dividing cells, with the

two rows marking the network components WUS, CLV3, Type A ARR and Type B ARR,
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marked in different colors. Notice that the gross pattern of these components is maintained

during growth. This specific simulation assumed that all cells express the same amount

of receptors. Supplementary movie 2 is obtained by a simulation which assumes a specific

initial profile of receptors and then applies a model of receptor propagation to pattern the

receptor domain (see in later section). Here also one observes that the pattern of WUS, etc.

are maintained under conditions of growth and cell division. Furthermore, one can compare

the initial and final detailed profiles of the network components, to see with what fidelity the

pattern is the same. The initial and final patterns for case (i) are virtually the same. More

interesting is comparison of these for case (ii), where the receptor domain is determined by

the stochastic model, and hence its length can vary. In Figure M4A, we display the final

profiles of network components after several hundred cell divisions have occurred. Zooming

into the profiles for the first 30 cells(Panel B) shows very similar expression profile to Figure

M2B. The maintenance of the patterns occurs even with changes in receptor length (and

hence signaling) due to the feedback structure between CLV3, WUS and cytokinin alluded

to earlier. The main difference is slight variation in Type A ARR spatial profile, towards the

basal direction, which is due to a variation in the cytokinin receptor domain length. This

however does not affect the WUS profile very much.

Cytokinin, CLV3 dependent growth model

In our model, CLV3 as well as cytokinin establish a spatial gradient from the tip of the shoot

which progressively decreases as one goes deeper into the shoot. We assume that cytokinin

enhances growth rate, whereas CLV3 suppresses it. At the very tip, CLV3 is high enough

to prevent cytokinin from promoting fast growth. However, for the deeper layers, the CLV3

gradient falls off, and cytokinin can promote rapid growth. Since the cytokinin gradient itself

falls off, a break-even point is reached somewhere in the middle where maximum proliferation

takes place, as seen in Figure M5. Since the cells are not of very different sizes, we assume

that cytokinin and CLV3 affect the growth rate. Hence, we assume that λ, the growth rate

12
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Figure 4: Final profiles of network components after several hundred cell divisions, for the
variable receptor domain case.:Panel A shows the ”squashed” up profile, which when zoomed
into the first 30 cells, Panel B, shows very similar expression profile to Fig M 2B.

is dependent on the following function of CLV3 and cytokinin concentration,

f =
1

(1 + b2
4[CLV 3]n1)

a2[cyt]n2

(1 + a2[cyt]n2)
(3)

with the parameters, a2 = 0.1, n1 = 1, n2 = 1, and b2 = 1 (wildtype), b2 = 0.1 (CLV3-loss-of-

function). The form of this function is motivated by the following assumptions:(1) CLV3 and

0 5 10 15 20 25 30
0

20

40

60

C
o

n
ce

n
tr

at
io

n
 A

.U

 

 

CLV3
CYT

0 5 10 15 20 25 30
0

0.5

1

1.5

Cell #

P
ro

lif
er

at
io

n
 R

at
e

Figure 5: The spatial profiles of CLV3 and cytokinin(upper plot), which determine the
growth rate of cells(lower plot), which follows from Eq. 3

13



cytokinin decrease/increase the growth rate λ respectively, but saturate for high values. Since

b2 determines how strongly CLV3 suppresses WUS, b2
4, would give a substantial change in

growth rate for the wild type compared to the CLV3 loss of function mutant. (2) Their effect

is synergistic, as seen when once compares the sizes of the SEM’s for different conditions

(Figure 3 A-D main text). For the growth rate we use, λ = 0.1 + 15f , which corresponds

to a maximal value of unity, for cell number 10, from the values of [CLV 3], [Cyt], which are

displayed in Figure M5, for the wild type model.

Cytokinin Receptor Domain Propagation Model

Observations [1] suggest that the cytokinin receptor domain of expression is maximal several

cell layers below the stem cell domain(the first 3-4 cells). Thereafter, cells further below lose

expression of the receptors. Hence a simplified picture is that the cytokinin receptor region

is several cells long, and somehow manages to retain this pattern as the shoot grows. In our

experiments, we have not been able to establish how the cytokinin receptors are regulated,

but we have observed that the pattern of cytokinin receptors (through imaging an AHK4

receptor), is propagated perhaps through the action of auxin. Hence in our model we choose

a simple model for the cytokinin receptor domain propagation. We assume that each cell

in the shoot ultimately arises from the stem cell domain. It is born with a differentiation

counter (dcount = 0). Upon every division, daughter cells inherit the counter and subsequently

increases it by one unit to (dcount = dcount + 1). All cells which are not stem cells, and are

relatively young(have dcount < 6), are competent to express receptors. Older cells (dcount > 5)

lose receptor expression and are assumed to form part of the differentiated stem. Since

younger cells appear just below the stem cell domain, this simple model allows for a receptor

expression profile which extends roughly from cell 4-15. However, intrinsic to this model

is that, since cell divisions occur randomly, the receptor domain fluctuates in length as a

function of time. This can be seen in the figure below (Figure M6) which tracks the receptor

domain length over several shoot growth simulations. Considerable variability arises due to
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Figure 6: The histogram of the length of the receptor region after several shoot growth
simulations show variability.

random and asynchronous division of cells, which continually pushes out new cells from the

apical zone in a stochastic way.

Guide to interpreting supplementary movie 2

Movie S2, of growing cells show four different groups of components by coloring the same

growing shoot in four different ways. Referring to Figure M7, which shows a screen shot of

the movie of shoot growth:

• The first column on the left marks CLV3 and WUS in green and magenta respectively.

All other cells are marked as blue.

• The next column, Type-A ARR and phosphorylated Type-B ARR, marked in cyan

and red respectively.

• The third column marks out cell divisions, with, (stem cells)red, (1 division)cyan, (2

divisions)green, (3 divisions)magenta, (4 divisions)yellow.

• The last column marks out the receptor region in red.
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Figure 7: The coarse spatial pattern of key components of the initial template of cells.

Cytokinin biosynthesis feedback models

There are two possible modes of feedback regulation by which WUS can control cytokinin

biosynthesis, either by activation, or by suppression. Both these hypotheses are modeled in

a simple way as follows. The last equation in Eq. 1, for d[Cyt]
dt

is replaced by one of these

two equations, depending on which case is being considered. The first case represents WUS

feedback to positively regulate cytokinin biosynthesis.

d[Cyt]i
dt

= ˆa(1)Cr(1 +
ac[Sstemcells]2

1 + ac[Sstemcells]2
)− γcyt[Cyt]i + DCyt([Cyt]i+1 + [Cyt]i−1 − 2[Cyt]i)

(4)

The second case represents WUS negative feedback of cytokinin biosynthesis,

d[Cyt]i
dt

= ˆa(1)
Cr

1 + rc[Sstemcells]
− γcyt[Cyt]i + DCyt([Cyt]i+1 + [Cyt]i−1 − 2[Cyt]i) (5)

Both of these models are used with the same parameters in Table M1, to generate the curves

in Figure 4 A-D (Main Text).
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Robustness Studies

The mathematical model of stem cell maintenance extends a previously studied simplified

model of cytokinin perception [1] which includes WUS, CLV1, CLV3, AHPT-P, Type B

ARRs and Type A ARRs. In the current model we include additional levels of regulations,

through 3 new signals, Sstemcells, CLV3signal and cytokinin. In particular, several of the

species undergo diffusion. We first discuss parameterizing the passive transport coefficients.

Consideration of a diffusing morphogen, with diffusion constant D from a source, which

also degrades with rate γ, gives a typical length scale
√

D
γ

over which the steady state

profile drops exponentially. Since we have selected the degradation rate γ = 0.025, to

be the same for all species, we need to choose appropriate values of the passive transport

constants, so as to obtain the appropriate length scales, which according to observations(for

example CLV3 extends to approximately 3-5 cells, WUS extends from 5-10 cells). We further

make two simplifications in choosing D′s for the diffusing species, namely CLV3, Sstemcells,

cytokinin, CLV3signal:(1) we assume all proteins share the same passive transport rate,(2)

Dcyt > 10DCLV 3,..(metabolites diffuse faster than proteins [4]). We have selected D, by

hand, for all species such that the cytokinin profile extends approximately from cells 1-15,

and WUS appears strongly for cells 5 − 15. Figure M8 describes a robustness study of the

CLV3-WUS pattern to variation of D over a 5 fold range (i.e 5 times larger as well as 5

times smaller than the fiducial passive transport coefficient D = 0.025, Dcyt = 0.25). As can

be seen from the plots, for lower D, the WUS peak is closer to the apical domain, which

for larger diffusion constants moves basally. This is expected, since, increasing the diffusion

constants make both cytokinin and CLV3 reach deeper into the meristem, while at the same

time allowing establishment of the pattern. The pattern is very robust to these changes.

In previous work [1], we have explored the robustness of the basic network for cytokinin

perception, and hence in this paper we explore the robustness of the other parameters,

namely:
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Figure 8: Spatial pattern of WUS and CLV3 for varying passive transport coefficient.

1. α2 – Production rate of CLV3

2. d1 – Activation of CLV3 by CLV 3signal.

3. d2 – Activation of CLV3 by Sstemcells.

4. α3 – Rate of production of Sstemcells.

5. dw – activation of Sstemcells. by WUS

6. Cr – production rate of cytokinin

7. α1 – production rate of CLV 3signal.

8. ds – activation of CLV 3signal by Sstemcells.

To study the robustness, we use the normalized spatial sensitivity.

Normalized Spatial Sensitivity

For a signaling-genetic network, described by dci

dt
= fi(cj, p1, p2, ...), with species concentra-

tion ci, and parameters pk, one way to study how small changes to parameters affect the
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Figure 9: WUS sensitivity in cell numbers 10, 11 & 12

model results is to study the normalized local sensitivity, which is defined as,

Sj
i =

pj∂ci

ci∂pj
(6)

The rate of change of the steady state value of a species concentration as a function of a

parameter is normalized with respect to the steady state value of the concentration and

the parameter value. Hence if we increase a parameter by a small amount δ%, the value

of the species concentration increases by Sj
iδ%. Since our template extends over several

cells, the sensitivity can be defined both with respect to each individual cell, and hence is

a spatially dependent quantity. Hence we define the spatial sensitivity by adding an extra

index k, as S(k)j
i. Here k refers to cell number, j is the parameter, and i is the species.

Since there are 8 species, and 8 parameters, within a cell, the sensitivity S is a 8× 8 matrix.

Using this definition we can perform the following studies: sensitivity dependence of a given

species within a given cell upon all the parameters; and spatial sensitivity of a parameter

for any species. In Figure M9 we see WUS sensitivity in three cells (10, 11&12), which are

within the main WUS domain. There are a couple of interesting features to notice,(1) WUS

in cell 10 is more sensitive to changes than Cell 11, since the former is close to the apical

WUS boundary and hence would be particularly sensitive to changes in expression level
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Figure 10: Heat maps of spatial sensitivity for several parameters. The species are numbered
1− 8, and correspond to AHPT-P, B-P, A, CLV3, WUS, cytokinin, Sstemcells, CLV3signal.

with respect to parameter changes, whereas cell 11 is within the WUS domain. (2) The

second point is that increasing the majority of parameters lead to negative sensitivity, since

increasing any of them(except 3, 6), lead to increase in CLV3. (3) We see from the figure

that for cells 11 and 12, the most sensitive parameter is the rate of cytokinin production.

In Figure M10 we show the heat maps, which plot the spatial sensitivity for each species,

for three of the relevant parameters (1,4 & 6), which correspond to CLV3, Sstemcells, and

cytokinin production rates respectively. In each case we see that the sensitivity in all cells

for a particular species is affected. In particular:(1)for CLV3 production rate–CLV3 has
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Figure 11: Sensitivity of CLV3, cytokinin, Sstemcells & CLV3signal to changes in all param-
eters in cell 11(Panel A). Sensitivity of AHPT-P, B-P & Type ARR signals to changes in all
parameters in cell 11(Panel B)

a positive sensitivity, as seen in the bold line on species 4, which corresponds to CLV3

increase on increasing the production rate of CLV3.(2)Sstemcells production rate–CLV3,

CLV3signal and Sstemcells display positive sensitivity. (3)cytokinin production rate–here

not all cells display the same sensitivity, because not all cells have the same amount of

signaling (stem cells have basal amounts of receptors).In particular, AHPT-p, B-p & WUS

have positive sensitivity, whereas Type A ARR has negative sensitivity. One can see that

the nature of the feedbacks makes several species sensitive to changes even in one parameter.

In Figure M11A,B, which displays normalized sensitivity in cell 11, we see that in addition

to WUS(Figure M9), cytokinin, AHPT-P, Type A ARR & B-P are all sensitive to changes in

cytokinin production. Increasing cytokinin leads to more signal, hence higher B-p, AHPT-P,

but lower Type ARR, since WUS represses Type ARR. Meanwhile increases in WUS lead to

more Sstemcells. Also Sstemcells is sensitive to changes in its production which is expected.

Parameter distributions based upon random search

The above robustness study was local, namely we slightly perturbed parameter values,

one at a time, and observed changes in species levels. Now we explore new parameter
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sets, which could give similar/closely matched patterns. To collect other parameter sets,

we first randomly generate a test parameter set, with each parameter value perturbed by

0.5 − 1.5(uniformly distributed) its original fiducial value(Table M1). We use the Nelder-

Mead (downhill simplex) [9] method for optimizing the parameters to fit the final expression

patterns of WUS and CLV3, in the wild type(fiducial parameter set) for 30 cells. We chose

to do this as, these species are crucial components of the network and also display high

sensitivity to parameter changes. The error function is defined as,

error = (
∑

i=1:30

[WUS(i) − WUS0(i)]
2) + (

∑
i=1:30

[CLV 3(i) − CLV 30(i)]
2) (7)

With the starting initial random parameter set, we run the simplex until a certain tolerance

is reached (i.e until the error does not decrease any further). We performed a Monte-Carlo

simulation, by generating hundreds of parameter sets, the distributions of which are displayed

in Figure M12A. The relative variance of the parameters are displayed in Figure M12B, by

scaling the parameter values to unity. From here we see that the parameter that stands out

as least robust is the cytokinin production rate. On the other hand, the other parameters

are fairly robust.

CLV3 loss/gain of function

Throughout the text and supplementary figures, we assume that the ”wild type” and CLV3

loss of function correspond to b2 = 1, 0.1 respectively, unless mentioned otherwise (in Figure

S5 A,B). To obtain the Figure S8 A,B, we assume same parameters as in Table M1, but

with the change, b1 = 2, which corresponds to higher transcriptional efficiency of the Type

B ARR, in transcribing WUS. The CLV3 loss of function (Figure S8 B) is simulated for

b2 = 0.01. Figure S3 A, B, main text, for the CLV3 gain of function is obtained for b2 = 100.

As discussed in the main text, in Figure S3 B, CLV3 and WUS levels are small, which

correspond to loss of meristem function. Here, cytokinin signaling is weak, even though
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Figure 12: Histograms of parameter values for repeated simulations starting from random
parameter guesses(left panel). Means and standard deviation of the parameter values(right
panel)

cytokinin is present. The question is why this is so. The small amount of cytokinin signaling

is enough to keep Type A ARRs at a high level(Figure M13). Type A ARRs negatively

regulate cytokinin signaling and hence leads to low WUS levels. Since WUS is not able to

suppress Type A ARR levels, this leads to the situation where cytokinin levels are high, but

cytokinin signaling is low.
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Figure 13: Network component expression as a function of cell numbers, for the CLV3gain of
function mutant. Notice that Type A ARR is at a significantly high level, thereby ensuring
that WUS is kept low.

TABLE1

Kh1 vh1 Kh2 K1 α v1 K2 a0 a1 a2 n b0

5 2 5 1 2 1 1 0.01 5 10 2 .001

b1 b2 α1 ds α2 d1 d2 α3 dw Cr ac rc

0.25 1 10 0.1 5 0.1 1 1 0.33 1 0.5 1

Table 1: The concentration of the network components are in dimensionless units, the rate
constants (transcription and degradation) are in units of min−1, and the Michaelis-Menton
constants are dimensionless. We assume no form of cooperativity unless specifically men-
tioned( we use n = 2, since multiple binding sites for WUS were found on the Type A
ARR promoter [3]). Typical timescales of phosphorylation/de-phosphorylation time of the
AHPTs are min, and time scales of induction of the Type A & Type B ARRs, are hrs [1].
Based on this we assume a degradation rate for the Type A ARR to be 0.025min−1. We also
assume that all degradation rates γi = 0.025min−1. Treatment of cytokinin is simulated by
assuming an external fixed concentration of cytokinin(c0 = 100). To generate Figure 2 C,
main text, we assume for the WUS mutant b1 = 0.125.
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