
Supporting Information
Wontakal et al. 10.1073/pnas.1121019109
SI Materials and Methods
ChIP-Seq Data Analysis.All reads (36 bp) from the GATA-1 ChIP-
Seq weremapped to themouse genome (versionmm9 or build 37)
by the ELAND aligner within the Illumina Analysis Pipeline.
Aligned reads with a single best matching location and up to two
mismatches were retained for peak identification. As genome-
wide binding profiles from replicate chromatin immunoprecipi-
tation and high-throughput sequencing (ChIP-Seq) runs were
highly correlated (data not shown), we combined aligned reads
from replicates and obtained a total of 9,486,136 and 18,717,198
uniquely mapped reads from embryonic stem cell-derived ery-
throid progenitor (ES-EP) proliferating and differentiating cells,
respectively. For input DNA controls, 7,488,885 and 8,535,843
reads were obtained for each of these two respective conditions.
The program spp (1) was applied to call peaks, genomic regions
of significant GATA-1 occupancy, by comparing reads from the
immunoprecipitated (IP) sample to the corresponding input
DNA sample. To estimate parameters for final peak calling, we
initially called peaks for replicated data independently and then
the combined data and calculated the overlaps of peaks from the
combined reads with the union of peaks from two individual
replicates. Afterward, we selected spp parameters to maximize
the overlaps that also yield comparable peak numbers between
proliferating and differentiating conditions. The final spp pa-
rameters were scored >8 and enrichment.lb >1, with the rest set
to defaults, which resulted in 6,600 and 10,600 GATA-1 peaks in
proliferating and differentiating ES-EP cells, respectively.
For eachGATA-1 peak we extracted a 500-bp sequence around

the peak center (i.e., ±250 bp) and used it for de novo motif
discovery by the MEME software (2). The known consensus
GATA-1 binding motif was the top motif returned by MEME for
both proliferating and differentiating conditions, and 95% andi
79% of peaks were found to contain the consensus motif,
respectively.
To associate peaks with target genes, we tested several criteria,

assigning genes with GATA-1 peaks from −2 kb, −10 kb, or −20
kb of transcription start sites (TSS) to +10 kb of transcription
end sites (TES). In addition, we also tested assigning peaks to
the closest gene. As a group, GATA-1 targets resulting from the
first three criteria did not show significant differences of GATA-
1–dependent gene expression except when they were compared
with the last group on the basis of the nearest distance (Fig. S3).
Accordingly, we chose −20 kb of TSS to +10 kb of TES as the
criterion for assigning a peak to a gene. The same criterion was
used to assign ChIP-Seq peaks for PU.1, Klf1, and SCL to genes.
Totals of 1,380 Klf1 peaks and 2,994 SCL peaks were collected
from previous studies by Tallack et al. (3) and Kassouf et al. (4)
performed with fetal-liver erythroid progenitors, and PU.1 peaks
(16,241) were obtained from our previous ChIP-Seq analysis in
ES-EP cells (5). Gene targets were separated into groups on the
basis of the co-occupancy pattern of these four transcription
factors, and these groups were subjected to functional analysis
with Ingenuity Pathway Analysis and DAVID GO analysis (6).

Gene Expression Analysis. Acquisition of gene expression data for
proliferating and differentiating ES-EP and murine eryth-
roleukemia (MEL) cells and fetal-liver erythroid progenitors
from wild-type and PU.1 URE−/− was described previously (5)
and can be accessed from the National Center for Biotechnology
Information’s Gene Expression Omnibus (GEO) database using
accession no. GSE21953. Microarray data were normalized by
the RMA method in the GeneSpring GX software. The log2

transformed signal intensities were averaged for biological
replicates and used for computing expression fold change. Heat
maps were generated with the mean value of all time points for
a given gene and assigned a color gradient for each time point
by calculating the log2 ratio of that time point to the mean
expression value. GATA-1–dependent gene expression data
were downloaded from the GEO database using accession no.
GSE18042 (7). After data normalization, the fold change in
expression of a gene was calculated by comparing its expression
value at 0 h with the average value of all other time points.
Klf1- and SCL-dependent expression data were obtained from
Hodge et al. (8) and the GEO database using accession no.
GSE21877 (4), respectively. The signal intensities were log2
transformed and quartile normalized. Fold changes in gene
expression were determined with the limma algorithm (9) in the
Bioconductor package.

e4c Interaction Data. A total of 551 and 273 e4C genomic clusters
interacting with Hba and Hbb, respectively, and a total of 6,396
highly transcribed genes (by RNAPII-S5P occupancy) were
obtained from Schoenfelder et al. (10). Active Hba- and Hbb-
interacting genes in erythroid cells were defined as transcribed
genes within the e4C clusters, as described previously (10).
Overrepresentation of active e4C genes in different groups was
calculated using the hypergeometric probability distribution.

Statistical Analysis. Wilcoxon signed rank tests were applied to
compare differences in gene expression changes between any two
groups of genes with designated patterns of transcriptional factor
occupancy. A binomial test was applied to calculate the enrich-
ment of genes occupied by three factors, respectively, in all genes
from the mouse genome, erythroid-specific genes, and genes
highly expressed in the erythroid lineage. All statistical analyses
were carried out in the R language.

Mathematical Modeling. A system of four coupled nonlinear or-
dinary differential equations is used to model the GATA-1–PU.1
regulatory network:
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The state variables of the preceding system of equations can be
interpreted according to the following definitions: G, GATA-1
concentration; P, PU.1 concentration; GT, GATA-1 target con-
centration; and PT, PU.1 target concentration. The parameter
values are labeled with subindexes a, activation; i, inhibition; d,
degradation; r, regulator; t, target; s, stimulus. Gs and Ps are the
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GATA-1 and PU.1 stimulation rates; n is the Hill coefficient; kar
and kat are maximal activation rates; Kar, Kat, Kir, and Kit are half-
maximal concentrations for activation or inhibition as indicated
by subscripts; and kd is the first-order degradation rate assumed
to be equal for all species included in the model.
To demonstrate the independence of the model from a par-

ticular choice of units for time and concentration, it is possible to
introduce a change of variables that enables the expression of all
parameter values as dimensionless quantities according to the
Buckingham π-theorem (11). For example, time can be scaled by
the degradation rate (which has units time−1) rather than spec-
ifying an arbitrary scale. This process demonstrates the capacity
to eliminate redundant dimensions from the parameter space of
the model. We therefore derive a dimensionless form for the
model of Eqs. S1–S4 in Eqs. S5–S8:

dγ
dτ

¼ γs þ κr
γn

1þ γn
λnr

λnr þ πn
− γ; [S5]

dπ
dτ

¼ πs þ κr
πn
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γ
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In the derivation of the dimensionless Eqs. S5–S8 the state
variables and time from Eqs. S1–S4 have been scaled according
to the following relationships: γ ¼ G

Kar
, π ¼ P

Kar
, γT ¼ GT

Kat
, πT ¼ PT

Kat
,

and τ ¼ kdt. The relationship between the parameter values of
the dimensional and dimensionless forms of the model along
with an associated set of base parameter values is presented in
Table S1. Selecting values for the dimensionless parameters in-
duces the definition of an equivalence class of dimensional
models that all exhibit similar qualitative behavior where the
relationships among the dimensioned parameter values result in
the corresponding values for the dimensionless parameters. Our
numerical simulations of Eqs. S1–S4 are based upon a member
of the equivalence class defined by the parameter values in Table
S1. Note that the parameter values Kir and Kit (equivalently λr
and λt) are modulated in numerical simulations to compare
alternative network topologies (Table S2).
Here we define the assumptions of the model with reference to

variables and parameter values in Eqs. S1–S4. Identical as-
sumptions apply to Eqs. S5–S8. To model the GATA-1/PU.1
regulatory network we assume that the network architecture for
GATA-1 and its targets is symmetric to that for PU.1 and its
targets. Somewhat more formally, there is a permutation sym-
metry among the state variables representing GATA-1 and PU.1
as well as GATA-1 targets and PU.1 targets as demonstrated by
the invariance of the model under the set of transformations
σ : fG ↔ P;GT ↔ PT ;Gs ↔ Psg: We introduce asymmetry only
in the upstream stimuli (e.g., erythropoietin and GM-CSF rep-
resented by the relative magnitudes and duration of Gs and Ps).
In Eqs. S1 and S2, Gs and Ps, respectively represent GATA-1
and PU.1 upstream stimulation rates. The second terms of Eqs.
S1 and S2 consist of three components. The first is the maximal
activation rate described by the parameter kar. The second parts
are Hill functions describing the autoregulation of GATA-1 and
PU.1 with half-maximal activation constants Kar (12). The cor-
responding Hill coefficients, n, in the base parameter set are >1
to represent the existence of multiple binding sites for GATA-1
and PU.1 in the upstream regulatory regions of the GATA-1 and

PU.1 genes (13–15). The third parts are Hill functions repre-
senting the mutual inhibition of PU.1 and GATA-1 on each
other’s gene expression with half-maximal inhibition constants
Kir. Qualitatively identical results are obtained even if the Hill
coefficients in the autoregulatory and cross-inhibition terms are
independent for all combinations of Hill coefficients in the range
we tested: n = 2, . . . , 6. The autoregulatory and cross-inhibition
components of the second terms are multiplied by one another
to represent their competition to control the synthesis rates of
GATA-1 and PU.1. The final terms of Eqs. S1 and S2 represent
first-order degradation processes with rates kd for both GATA-1
and PU.1. Eqs. S3 and S4 represent the dynamics of GATA-1
and PU.1 targets, respectively. The first term of Eq. S3 repre-
sents GATA-1–mediated activation of its targets with half-max-
imal activation constant Kat, the second term is PU.1 inhibition
of the expression of GATA-1 targets with half-maximal in-
hibition constant Kit, and the third term is the first-order deg-
radation with rate kd of the GATA-1 targets. We have assumed
that GATA-1 and PU.1 serve as independent inputs to their
respective target genes. The terms of Eq. S4 are analogous to
those of Eq. S3 but describe the regulation of PU.1 targets. The
overall form of Eqs. S1–S4 is similar to that proposed by Laslo
et al. to model a different aspect of the hematopoietic gene reg-
ulatory network (16). This system of equations is symmetric for
GATA-1 and PU.1 and therefore the differential stimulus applied
to favor GATA-1 and the erythroid cell fate over PU.1 and the
myeloid cell fate in the test case shown in Fig. 4 would produce
precisely the opposite result (i.e., PU.1-mediated myeloid lineage
differentiation as opposed toGATA-1–mediated erythroid lineage
differentiation were the stimuli magnitudes permuted).

Characterization of the Mathematical Model. To understand the
function of the GATA-1–PU.1 network topology identified ex-
perimentally (Fig. S7D) we investigated the effects of continuous
modulation of the network topology upon the cell fate de-
termination specified by the ratio between the steady-state ex-
pression levels of GATA-1 and PU.1 target genes. The model was
evaluated via numerical simulations in whichGATA-1 receives an
initial transient stimulus GS that is 10-fold higher than that ap-
plied to PU.1 (Figs. S8–S11 and Table S1). To produce the net-
work topology shown in Fig. S7A given the system of Eqs. S1–S4
we require the parameters Kir and Kit to take values that are high
relative to the maximal protein concentrations. To modulate the
network topology from that of Fig. S7A (bottom center corner of
Fig. 4A) to that of Fig. S7B (right corner of Fig. 4A) we varied the
parameterKir along this axis (the x axis) from high [Max(K) = 103]
to low [Min(K) = 10−1]. However, for clarity of presentation, on
the x axis of Fig. 4 we transformed the Kir values using the fol-
lowing function f(K) = Max(K) − Min(K) − Kj, where K repre-
sents the vector of Kir values K = {Kj}, thus representing the
antagonistic interaction strength. We transformed the Kit values in
the same way to represent antagonistic interaction strengths along
the y axes of Fig. 4. When Kir is high, the terms Kn

ir
Kn
irþPn and

Kn
ir

Kn
irþGn

from Eqs. S1 and S2, respectively, are ≈ 1 and therefore neither
GATA-1 nor PU.1 inhibits the expression of the other. As Kir
decreases, the concentrations of GATA-1 and PU.1 play in-
creasingly significant roles as inhibitors of the expression of the
other and, in the case when either GATA-1 or PU.1 reaches ex-
tremely high levels, these terms approach zero. The network to-
pology is similarly modulated from that of Fig. S7A to that of
Fig. S7C by decreasing the value of the parameter Kit. The net-
work topology represented in Fig. S7D is produced when both
Kir and Kit take on low values relative to the maximal protein
concentrations.
To characterize the dynamics ofGATA-1–PU.1 regulation near

each of the four corners of the Kir – Kit parameter space repre-
sented in the xy plane of Fig. 4A we simulated Eqs. S1–S4 for four
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different combinations of Kir – Kit parameter values described
with their corresponding network topologies in Table S2.
The dynamics for each parameter set listed in Table S2 are

displayed in Figs. S8–S11. Note that when the mutual inhibition
is low regardless of the state of inhibition of the downstream
targets, the GT/PT ratio is low given the 10:1 Gs/Ps asymmetric
input (Figs. S8 and S10). When the mutual inhibition is in-
creased, the GT/PT ratio increases, even with relatively low
inhibition of the downstream targets (Fig. S9); however, when

inhibition of the downstream targets is increased following an
increase in the mutual inhibition, the most significant increase
in the GT/PT ratio occurs (Fig. S11). This result is consistent
with the theoretically and experimentally corroborated con-
clusion stated in the main text that mutual inhibition and re-
pression of downstream targets act synergistically to produce
a high-fidelity mapping from upstream cell-fate determining
signals to the cell fate specified by a particular downstream
gene expression program.
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Fig. S1. Properties of GATA-1 ChIP-Seq peaks. (A) Comparison of GATA-1 ChIP-Seq peaks in proliferating and differentiating ES-EP. The number of reads (log2

transformed) in each GATA-1 ChIP-Seq peak present in the two types of cells is shown for proliferating ES-EP (abscissa) and differentiating ES-EP (ordinate). The
red line represents local quantile and Lowess regression fitting. The correlation coefficient for the data displayed is 0.68 (P < 2.2e-16). (B) GATA-1 ChIP-Seq
peaks were annotated by their genomic locations with respect to current gene annotation and classified as proximal promoter (±2 kb of TSS), 3′ end of gene
(±2 kb of TES), gene body (between +2 kb of TSS and −2 kb of TES), miRNA promoters, or otherwise intergenic regions. (C) Sample signal tracks of GATA-1
ChIP-Seq data from ES-EP and differentiating ES-EP (ES-EP Diff) ∼100-kb region near the β-globin locus in the Integrated Genome Browser (IGB) (Affymetrix)
with the y axis representing the number of reads. Input DNA controls for both cell types are also shown. (D) Sequence logos for the enriched motifs within
GATA-1 ChIP-Seq peaks from ES-EP (Left) and differentiating ES-EP (Right) were derived from MEME motif analysis (SI Materials and Methods). The percentage
of peaks with the motif is also shown.
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Fig. S2. qChIP validation of GATA-1 occupancy. qChIP was performed as described in SI Materials and Methods with chromatin from proliferating (A) and dif-
ferentiating (B) ES-EP with primers described in Table S3. Myogenin and β-HS2 served as negative and positive control loci, respectively. HA antibody was used as an
isotype control. SDs were calculated from triplicate PCR reactions. Similar results were obtained with at least two independent chromatin preparations.
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Fig. S3. Analysis of four different criteria for assigning GATA-1 ChIP-Seq peaks to genes. GATA-1 ChIP-Seq peaks in proliferating ES-EP (A) and differentiating
ES-EP (B) were assigned to genes on the basis of four different criteria: (i–iii) assignment if the peak lies within the region spanning from −2 kb (i), −10 kb (ii),
and −20 kb (iii) of a TSS through +10 kb of the TES and (iv) assignment of the peak to the nearest gene. Using these four assignment criteria and published
GATA-1–dependent gene expression changes in erythroid cells (1, 2), boxplots were constructed to show the log2 fold change in expression of the four dif-
ferent sets of genes.

1. Cheng Y, et al. (2009) Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression. Genome Res 19:
2172–2184.

2. Yu M, et al. (2009) Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell 36:682–695.
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Fig. S4. GATA-1 acts upstream of SCL and Klf1. (A–C) Occupancy maps from ChIP-Seq data for GATA-1 in proliferating and differentiating ES-EP and for SCL
and Klf1 in FL-EP are shown in the vicinity of the genes encoding GATA-1 (A), SCL (Tal1) (B), and Klf1 (C). (D) Heatmap of GATA-1–dependent changes in gene
expression (1, 2) of SCL and Klf1. (E) Gene expression differences for GATA-1 and Klf1 between FL-EP from wild-type and SCL DNA-binding–defective mutant
mice (3). (F) A model for a coherent type 1 feed-forward loop formed by GATA-1 and SCL and by GATA-1 and Klf1 based on the ChIP-Seq and gene expression
data displayed in A–E.

1. Cheng Y, et al. (2009) Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression. Genome Res 19:
2172–2184.

2. Yu M, et al. (2009) Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell 36:682–695.
3. Kassouf MT, et al. (2010) Genome-wide identification of TAL1’s functional targets: Insights into its mechanisms of action in primary erythroid cells. Genome Res 20:1064–1083.
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Fig. S5. PU.1 binds near to the GATA-1, SCL, and Klf1 genes and represses their expression. (A–D) Occupancy maps from ChIP-Seq data for GATA-1, SCL, Klf1,
and PU.1 in the vicinity of the genes encoding (A) GATA-1, (B) SCL (Tal1), (C) Klf1, and (D) PU.1 (Sfpi1). (E) Log2 fold change in gene expression of GATA-1, SCL,
and Klf1 in PU.1-depleted (URE−/−) vs. wild-type early FL-EP (5).
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Fig. S6. PU.1 binds near the genes encoding two important cofactors of GATA-1 and represses their expression. (A and B) Occupancy maps from ChIP-Seq data
for GATA-1 and PU.1 near the genes encoding (A) FOG1 (Zfpm1) and (B) Gfi1b. (C) Log2 fold change in gene expression of Zfpm1 and Gfi1b in PU.1-depleted
(URE−/−) vs. wild-type early FL-EP. Data are from ref. 5.
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Fig. S7. (A–D) Description of four GATA-1–PU.1 regulatory network topologies. See Table S2 for examples of parameter value relationships that specify, in the
mathematical model, each of the regulatory network topologies. Relevant limiting cases of the model are shown in parentheses following each description. (A)
GATA-1 and PU.1, each regulated by an upstream stimulus, autoregulate themselves and activate mutually exclusive sets of downstream targets (Kir →∞, Kit →
∞). (B) Same as A but GATA-1 and PU.1 directly inhibit the expression of the other (Kir → 0, Kit → ∞). (C) Same as A but GATA-1 and PU.1 inhibit the expression
of the other’s downstream targets (Kir → ∞, Kit → 0). (D) Combination of B and C where GATA-1 and PU.1 both inhibit each other directly and inhibit the
expression of the other’s downstream targets (Kir → 0, Kit → 0).
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Fig. S8. Temporal dynamics for the network topology depicted in Fig. S7A. (Top) Upstream stimulus pulses for GATA-1 (Gs) (Left) and PU.1 (Ps) (Right).
(Middle) Time-dependent changes in the concentrations of GATA-1 (Left) and PU.1 (Right). (Bottom) Time-dependent changes in the concentrations of GATA-1
(Left) and PU.1 (Right) -dependent transcripts. All y-axis units are arbitrary. Parameter values are all specified in Table S1 except for those that select the
network topology Kir = 100, Kit = 100.
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Fig. S9. Temporal dynamics for the network topology depicted in Fig. S7B. Layout and parameter values are the same as Fig. S8 except Kir = 1, Kit = 100.
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Fig. S10. Temporal dynamics for the network topology depicted in Fig. S7C. Layout and parameters are the same as Fig. S8 except Kir = 100, Kit = 1.
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Fig. S11. Temporal dynamics for the network topology depicted in Fig. S7D. Layout and parameters are the same as Fig. S8 except Kir = 1, Kit = 1.

Table S1. List of parameters with base values

Dimensionless parameters Dimensioned parameters Description Base value(s)

κr
kar

kdKar
Transcription factor maximal activation rate 10

λr
Kir
Kar

Transcription factor half-maximal inhibition constant 10−1–103

κt
kat

kdKat
Target maximal activation rate (per input) 10

λt
Kit
Kar

Target half-maximal inhibition constant 10−1–103

α Kat
Kar

Ratio of target to regulator half-maximal activation 1

γs
Gs

kdKar
GATA-1 upstream stimulus 10× pulse

πs
Ps

kdKar
PU.1 upstream stimulus 1× pulse

n n Hill coefficient 2

Subscripts of parameter values can be interpreted according to these definitions: a, activation; d, degradation; i, inhibition; r, regulator; s, stimulus; t, target.

Wontakal et al. www.pnas.org/cgi/content/short/1121019109 11 of 12

www.pnas.org/cgi/content/short/1121019109


Table S2. Correspondence between network topologies and parameter values

Fig. 4A corner Fig. S7
Figure containing

dynamics Kir Kit

Direct cross-inhibition
strength

Downstream target
inhibition strength

Center bottom A Fig. S8 100 100 Low Low
Right B Fig. S9 1 100 High Low
Left C Fig. S10 100 1 Low High
Center top D Fig. S11 1 1 High High

Table S3. List of qChIP primers

Gene Forward primer Reverse primer Reference

Myogenin GAA TCA CAT GTA ATC CAC TGG A ACG CCA ACT GCT GGG TGC CA (1)
β-HS2 TGT GTT CAG CCT TGT GAG CCA GC TGG ACT TCC TCC TAG AGA CCC AG (2)
HDGF CCA AGA AAG ATG TGG GAG GA CTG CTG CAG AAA GCT GAT TG This study
Zdhhc19 TTT GAG GGT GAG GGT CAA AG CCA TTT CTG CCA GGA GGT TA This study
Slc16a10 CTG CAG AGG CCA GAT AAG GA AAG CTA GGG GAC AAG GGA TG This study
Gypc CAC GCC TAT CAG CAT ATG GA GAG ACA GCT ACC ACG GGT GT This study
Chr 13 140613517 CAG GCT GGG AGA GAA TTT TG GTA CGC ACT TTG GGG TTT TG This study
H2AFY3 GGT CCA GGA CAA CGG TTC TA AGC TCA GGG TGT GAC AGA GG This study
Ifih1 CCC TTA TCA ATG GCC ACA GT AAA ACG GAA TCA ACG GTT TG This study
Dapp1 GCC AAT GCA TAA GTG AGC AA GGC TTC CGG AAC ACA AGA TA This study
Accn2 AAT CGG AAA GAT CCC AGC TT AAT GCA GCC CTC CAT ATC AC This study
Gfi-1b GCC CCT GAT AAC ACT TGG AA GCA ACT GGA GGG AAA TCT GA This study
Fam125B TAT GTC TGG TGG CAC ATG CT GTG ACA GCC AAA GGA GGA AA This study
Zfpm1 AGC GAT GGG GTT GAT AAG TG CGG TGA TAA GCA GAG CCT GT This study
Lyl1 GGG GTC AGC ATT GCT TCT TA CCT GGC TTC CTC CCT CTT AC This study
Chr 16 93147915 TAC CCT GGT CTC ACC TCA GC AGG CAG TGA AGG GGA AAG AT This study
Pvt1 GAT GTC CCC AGA TAG CCA GA AGA CTC CAG AAG TGG GCT GA This study
St3gal TTG CGA ACA TGC AAA GAT TC TTT GAG AAG AGT GGG GCA GT This study
Rap1a GGT CGT TTG TCT TTC CTC CA CAG TCT GTC CCC TCC CTA CA This study
Trem14 GGC CTG CTG AAT TCT CTC TG GGA GAA GGA ACC TCC TGA CC This study

1. Lu J, McKinsey TA, Zhang CL, Olson EN (2000) Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6:233–244.
2. Stopka T, Amanatullah DF, Papetti M, Skoultchi AI (2005) PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J 24:

3712–3723.
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