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Multitaper Spectral Analysis. The pieces were converted to point-
process data as described in Materials and Methods (i.e., a vector
consisting of the locations in time of all note onsets in each
piece). From the raster representation of a piece i with onsets at
{tij}, j = {1,2,3,. . .,Ni}, and tiN = Ti, we compute the multitaper
spectra using the K taper functions {hk(t)} as,
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Here, Hk(f) is the Fourier transform of hk(t). Here, we use three
Slepian sequences (K = 3) to compute the spectra.
Compared with conventional spectral analysis, which uses

a single type of analysis window, multitaper spectral analysis
computes the spectrum several times with different windows; the
final estimate is given by taking the average. In conventional
spectral analysis, the window controls the trade-off between
spectral resolution and spectral leakage between analysis chan-
nels. In multitaper spectral analysis, Slepian functions are used as
windows, which are orthogonal and are designed to reduce
spectral leakage. This approach leads to reduced estimate vari-
ance, compared with calculating the power spectrum using
a single taper in a Fourier transform computed on the entire
signal or using Welch’s method.

Detrended Fluctuation Analysis and Hurst Exponent Calculation.
Detrended fluctuation analysis (DFA) and Hurst exponent cal-
culation were computed as additional tests of 1/f structure; these
are often used to confirm 1/f structure after it has been revealed
by spectral analysis. It has been shown that the slope of the log
power spectrum (i.e., β in [1/f]β) for time series can be estimated
using these techniques (1–6).
For each song, as with the multitaper analysis, all voices were

collapsed into a single time series representing the onset times of
each note. Next, this time series was converted to durations by
measuring the time between successive onsets. This duration time
series was used for the DFA and Hurst analysis.
DFA is computed by converting the time series into a cumu-

lative time series. This new series is then divided into windows of
varying length (L); for each, a first-order polynomial was fit. The
root-mean-square deviation from the trend of the cumulative

series gives the fluctuation [F(L)]. A scatter plot was made of the
log[F(L)] vs. log(L), for various values of L. The slope of the
regression curve gives an estimate of α. An α-value of 0.5 in-
dicates white noise, and an α-value of 1 indicates 1/f structure
with a β-value of 1. Our estimate of β, averaged across all pieces,
using this technique was 0.84, very similar to the estimate 0.85
derived using multitaper spectral analysis.
The Hurst exponent is based on calculating the rescaled range

of the time series for all partial time series of length n. First, the
mean is subtracted from the time series. Next, the cumulative
time series is computed. The range and SD for the time series is
calculated for all n less than the total length. The ratio of the
range to the SD is referred to as the rescaled range and is av-
eraged for all partial time series of length n. The curve of n
versus the rescaled range is then fit using a power law curve, with
the exponent giving the Hurst exponent (H), where β = 2H − 1.
Using this procedure on the duration time series of each piece,
the average β was 0.88, nearly identical to the DFA and multi-
taper estimates.

Statistics, Bootstrapping, and Control Experiment. In the experi-
ments reported here, we were interested in (i) computing the
statistical significance of each power exponent β and (ii) com-
puting the confidence intervals for β by genre and composer. To
accomplish this, we used a bootstrapping approach (4) to com-
pute the null distribution and estimate the statistical significance
of obtaining the estimated β-parameter estimates for each genre
and composer. Shuffled versions of each musical composition
were created by randomly permuting the note onsets and ras-
terizing the resulting sequence. The shuffled versions of the
compositions control for the possibility that a random collection
of durations would give rise to 1/f, or even that a randomly or-
dered collection of the durations used in the composition would
give rise to 1/f. The shuffling also allows for a tighter experi-
mental design in which each stimulus can serve as its own con-
trol. Instead, we find that only this particular arrangement of
durations gives rise to 1/f, strongly supporting the point that 1/f
characterizes not all sound sequences, but those that are con-
sidered to be well-formed. This is a rigorous and widely used
method that requires minimal assumptions about the underlying
distribution and is the recommended procedure when the testing
the significance of individual samples and when the theoretical
distribution of a measure is unknown (4).
The Wilcoxon signed-rank test was chosen to compare dis-

tributions because it is a nonparametric (distribution indepen-
dent) test, and so does not require that we make any assumptions
about the underlying distribution of the data. Although not as
powerful as parametric or General Linear Model-based tests, it is
a more conservative test, far less prone to type I errors (7). The
fact that the results reached significance at P < 0.01 with a con-
servative test, after adjusting for multiple comparisons, strength-
ens our claim of an effect.
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Fig. S1. Average rhythm spectra for select genres ordered by spectral exponent. Spectra are displaced by different amounts along the y axis (based on slope)
for clarity of presentation. Other conventions are as in Fig. 2.

Fig. S2. The 1/f rhythm spectra for Ragtime (compare with Fig. 3 in main text) (A) Rhythm spectra for ragtime. Average spectra (brown points) and linear fit
(brown) to average spectrum in the frequency range of 0.01 to 1 Hz. Faded orange lines represent spectra of individual pieces. Gray data represent spectra of
shuffled rhythms. Other conventions are as in Fig. 2B. (B) Distribution of rhythm spectral exponents obtained by linear fits to individual pieces (brown), and for
the corresponding shuffled rhythms (gray). Inverted triangle represents median exponents. Dashed vertical line: β = 0.

Table S1. Summary statistics for compositions of select genres ordered by decreasing mean spectral exponents

Genre No. of movements (no. of voices) Note durations (s) Piece lengths (s) β (original) β (shuffled) P value βorig>βshuf

Symphony 25 (2–21) 0.42 (0.37) 671 (417) 1.04 (0.22) 0.03 (0.13) 0.000
Quartet 723 (4–6) 0.23 (0.29) 347 (191) 0.85 (0.27) 0.00 (0.15) 0.000
Scherzo 11 (2–5) 0.12 (0.17) 211 (169) 0.81 (0.18) 0.10 (0.24) 0.001
Sonata 586 (1–8) 0.20 (0.25) 163 (93) 0.78 (0.37) 0.05 (0.22) 0.000
Etude 19 (2) 0.12 (0.16) 101 (31) 0.77 (0.40) 0.07 (0.16) 0.000
Fugue 51 (2–5) 0.14 (0.17) 164 (82) 0.75 (0.21) 0.01 (0.17) 0.000
Sonatina 48 (2–3) 0.15 (0.14) 95 (40) 0.67 (0.39) 0.05 (0.16) 0.000
Waltz 10 (2–3) 0.19 (0.17) 155 (66) 0.66 (0.36) 0.03 (0.18) 0.004
Prelude 56 (1–4) 0.26 (0.30) 115 (71) 0.62 (0.38) 0.09 (0.25) 0.000
Mazurka 50 (2) 0.20 (0.21) 138 (79) 0.53 (0.37) 0.03 (0.14) 0.000
Madrigal 24 (3–7) 0.45 (0.37) 146 (50) 0.53 (0.31) 0.02 (0.17) 0.000
Contrafacta 21 (5–7) 0.52 (0.36) 149 (47) 0.51 (0.33) 0.00 (0.14) 0.000
Ragtime 141 (2–3) 0.15 (0.14) 131 (53) 0.48 (0.26) 0.05 (0.17) 0.000

Values outside parentheses indicate means. Values inside parentheses indicate SDs across compositions (except for number of voices, which indicates
a range) for that row.
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Table S2. Summary statistics for compositions of select composers ordered by decreasing mean spectral exponents

Composer (period) No. of movements (no. of voices) Note durations (s) Piece lengths (s) β (original) β (shuffled) P value βorig>βshuf

Beethoven (1770–1827) 115 (2–5) 0.11 (0.17) 313 (162) 1.05 (0.25) 0.02 (0.14) 0.000
Vivaldi (1678–1741) 127 (2–8) 0.25 (0.21) 282 (153) 0.95 (0.37) 0.10 (0.29) 0.000
Frescobaldi (1583–1643) 40 (2–5) 0.44 (0.45) 237 (71) 0.94 (0.17) 0.08 (0.14) 0.000
Haydn (1732–1809) 230 (2–21) 0.36 (0.33) 371 (239) 0.84 (0.27) 0.00 (0.14) 0.000
Corelli (1653–1713) 141 (2–8) 0.36 (0.34) 160 (73) 0.76 (0.37) 0.11 (0.24) 0.000
Schubert (1797–1828) 14 (2–4) 0.15 (0.23) 174 (204) 0.76 (0.37) 0.04 (0.23) 0.000
Scarlatti (1685–1757) 54 (2) 0.13 (0.13) 116 (43) 0.68 (0.36) 0.01 (0.15) 0.000
Bach (1685-1750) 167 (1–13) 0.13 (0.20) 161 (124) 0.66 (0.37) 0.06 (0.23) 0.000
Chopin (1810–1849) 72 (2–3) 0.17 (0.19) 132 (92) 0.65 (0.42) −0.04 (0.20) 0.000
Monteverdi (1567–1643) 22 (5–11) 0.53 (0.37) 157 (60) 0.55 (0.34) 0.00 (0.15) 0.000
Mozart (1756–1791) 173 (2–4) 0.29 (0.29) 198 (238) 0.54 (0.40) 0.03 (0.15) 0.000
Joplin (1868–1917) 90 (2–3) 0.15 (0.14) 133 (54) 0.49 (0.26) 0.02 (0.15) 0.000

The complete list of composers analyzed is J. S. Bach, Beethoven, Brahms, Buxtehude, Byrd, Chopin, Clementi, Corelli, Dufay, Dunstable, John Field, Flecha,
Foster, Frescobaldi, Giovannelli, Grieg, Haydn, Friedrich Himmel, Isaac, Joplin, Josquin, Landini, Lassus, Liszt, MacDowell, Mendelssohn, Monteverdi, Mozart,
Pachelbel, Prokoviev, Ravel, Scarlatti, Schubert, Schumann, Scriabin, Sinding, Turpin, Vecchi, Victoria, and Vivaldi. Other conventions are as in Table S1.

SI Appendix 2. Same as SI Appendix 1, except that pieces are grouped by composer (41 composers). Some genres and composers
contributed very few pieces (less than 10) to the analysis: for these genres and composers, differences between original and shuffled
rhythm spectral exponents did not always reach significance at the P = 0.05 level, although spectra for the original and shuffled pieces look
clearly different (see for example, ballads, and composer, Josquin).

SI Appendix 2

SI Appendix 1. Rhythm spectra for musical compositions grouped by genre (16 genres). Figures in each page show a different genre.
In each figure, the Upper Left panel shows the individual rhythm spectra (light grey), mean rhythm spectrum for that genre (dark circles),
and linear fit to the mean rhythm spectrum (dark line). Spectra are plotted as power as a function of frequency in a log-log scale. Dashed
lines: extrapolations of the mean fit. The Upper Right panel shows the distribution of rhythm spectral exponents for that genre across
pieces, with the mean exponent indicated on the top. Similarly, the Lower Left and Right panels of each figure show the rhythm spectra and
distribution of spectral exponents, respectively, for the pieces with shuffled note onsets. The P value below the Lower Right panel indicates
the level of significance for the difference between the means of the exponent distribution of the original and shuffled onset rhythm
spectra (Wilcoxon signed rank test). Only pieces with more than 200 notes (onsets) were analyzed.

SI Appendix 1
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