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Figure S1: Direction of synaptic changes and maximal calcium amplitude. Which feature of the calcium
transient predicts most reliably the direction and magnitude of synaptic changes? A long-standing hypothesis
is that the maximal calcium amplitude induced by pre- and postsynaptic spikes is the key factor in determining
the direction and magnitude of synaptic plasticity (Bear et al. 1987; Hansel et al. 1997; Yang et al. 1999;
Cormier et al. 2001). Experimental data from Nevian and Sakmann (2006) show however that even though
an elevation of calcium is necessary to induce synaptic changes, there is a large region of maximal calcium
amplitudes for which both negative and positive weight changes are observed, depending on the order of pre-
and postsynaptic activity (see Nevian and Sakmann 2006; Fig.8). We show here that our model naturally
reproduces this phenomenon. (A) Location of the parameter sets in the Cpre − Cpost plane (orange triangle:
Cpost = 1.3; magenta square: Cpost = 2; Cpre = 1 in both cases; gray shaded region: bivariate Gaussian
centered at (C̄pre = 1, C̄post = 1.5), with standard deviations (σpre = 0.15, σpost = 0.4); see Tab. S3
for other parameters). (B) Change in synaptic strength as a function of the peak calcium amplitude for 100
sets of pre- and postsynaptic calcium amplitudes drawn randomly from the bivariate Gaussian distribution
shown by the gray shaded region in A; γp is chosen in each case such that the amplitudes of LTP and LTD are
approximately balanced. Three different regions appear: (i) low peak calcium amplitudes evoke LTD only, (ii)
intermediate calcium amplitudes (green shaded region) induce both LTP and LTD, depending on the order of
pre- and postsynaptic spikes, and (iii) high calcium amplitudes evoke LTP only. In region (ii), a given peak
calcium amplitude can lead to bidirectional synaptic changes, as in experiments (Nevian and Sakmann 2006).
Hence, the temporal dynamics of the calcium concentration is crucial to determine the direction and magnitude
of plasticity outcomes. (C,D) Left panels: Changes in synaptic strength for two examples of Cpre and Cpost

(see symbols) as a function of ∆t. Right panels: Changes in synaptic strength as a function of the maximal
calcium amplitude of the compound calcium trace. Each point of the curves correspond to a different value of
∆t. The red (blue) portion of the curves correspond to ∆t < 0 (∆t > 0), respectively. All synaptic changes
shown in this figure are in response to 60 spike-pair stimulations (∆t ∈ [−100, 100]) at 1 Hz.
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Figure S2: Plasticity results from different experiments are accounted for by distinct parameter sets.
The Cpre-Cpost plane is shown for θd = 1, θp = 1.3 as in Fig. 2C. The seven regions of different possible
STDP outcomes for spike-pair stimulation are indicated by the potentiation (P) and depression (D) nomencla-
ture (see Fig. 2). The blue, red and green symbols show outcomes from fitting our model to experimental data
obtained in hippocampal slices (Wittenberg and Wang 2006), hippocampal cultures (Wang et al. 2005) and
cortical slices (Sjöström et al. 2001), respectively. Fit results obtained from 100 randomly drawn initial con-
ditions are shown for each of the four systems (SI Materials and Methods). The fit results used in Fig. 3, 4, 5,
S3, S4, and S10 are shown as black symbols (see Tab. S2). Fits of the data from hippocampal slices lie in the D
region, with small amplitudes of the pre-synaptically triggered calcium transient (Wang et al. 2005). Fits from
hippocampal cultures lie in the DP region, with large amplitudes of the post-synaptically triggered calcium
transient (Discussion) (Wang et al. 2005). Finally, fits of the data from cortical slices (Sjöström et al. 2001)
lie in the DPD and DPD’ region. Interestingly, all fits to the different data sets yield comparable presynaptic
calcium amplitudes.
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Figure S3: Nonlinearities in response to spike-triplet and -quadruplet stimulation in hippocampal cul-
tures. (A) Calcium transients evoked by a pre-post-pre triplet (red line, ∆t1 > 0, ∆t2 < 0, see SI Materials
and Methods for the convention of ∆t1 and ∆t2) and a post-pre-post triplet (blue, ∆t1 < 0, ∆t2 > 0). Note
the large calcium transients evoked by postsynaptic spikes (Cpost = 1.7644, Cpre = 0.5816). (B) The frac-
tions of time spent above the depression (turquoise) and the potentiation threshold (orange, left-hand y-axis) as
well as position of the potential minimum, ρ̄, (black, right-hand y-axis) are shown with respect to ∆t2 for the
case of symmetrical spike-triplets, i.e., ∆t1 = −∆t2. The two examples from A are indicated by symbols in
the same color. (C) The change in synaptic strength for symmetrical spike-triplets (∆t1 = −∆t2) shows a clear
imbalance, where pre-post-pre triplets evoke no change or little potentiation and post-pre-post triplets induce
potentiation. The inset shows triplets with ∆t1 = ∆t2 + 20 ms for −20 < ∆t2 < 0 ms and ∆t1 = ∆t2 − 20
ms for 0 < ∆t2 < 20 ms (see D). (D) The imbalance in plasticity outcomes between pre-post-pre and post-
pre-post triplets becomes more apparent in the ∆t1 - ∆t2 plane. The color code depicts the change in synaptic
strength as given by analytical results. Post-pre-post triplets evoke strong synaptic potentiation for small |∆t1|
and |∆t2|. The magenta and the green lines indicate the pairs of ∆t1, ∆t2 exemplified in C in the same color.
The middle diagonal (black line) separates pre-post-pre and post-pre-post triplets. (E) In line with experi-
ments, spike-quadruplet stimulation yields stronger potentiation for post-pre-pre-post quadruplets (convention:
∆T > 0) as compared to pre-post-post-pre quadruplets (∆T < 0; ∆t = 5 ms and −5 ms for pre-post and
post-pre pairs, respectively). (F) Using the same parameter set as in A-E, the model reproduces the classical
STDP curve (DP) in response to spike-pair stimulation as seen in experiments. All changes in synaptic strength
are in response to the presentation of 60 motifs at 1 Hz. All data points in this figure are taken from Wang et
al. (2005) (mean ± SEM, if multiple points are available). Analytical results of changes in synaptic strength
are shown in magenta and simulation results in cyan. The ‘hippocampal cultures’ parameter set is used in this
figure (see Tab. S2).
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Figure S4: Synaptic changes for jittered spike-pairs. (A) In this stimulation protocol, the time of the the
presynaptic spike, tpre, is drawn from a flat distribution of the interval [−15, 15 ms] (red arrow), and the time
difference within one spike-pair , ∆tpair, is also drawn from a flat distribution of the interval [−15, 15 ms]
(blue arrows) (Sjöström et al. 2001). The distributions for tpre and ∆tpair for 5000 spike-pairs are shown in
red and blue, respectively. The distribution for pre-post (∆t > 0) or post-pre (∆t < 0) pairings with spikes
from consecutive spike-pairs, ∆tinter pair, is shown in green for a presentation frequency of f = 50 Hz (5000
spike-pairs). The peak at zero is discontinued and counts cases where a post-pre (pre-post) pair at time point i
is followed by a pre-post pair (post-pre) at time point i+1, that is, two presynaptic (postsynaptic) spikes follow
one another in consecutive spike-pairs. (B) Jittered spike-pairs evoke depression at low spike-pair presentation
frequencies (f < 19 Hz) and potentiation at high frequencies (f ≥ 20 Hz). Data points (black) are adapted
from plasticity experiment in cortical slices (Sjöström et al. 2001) (mean± SEM). Analytical results of change
in synaptic strength are shown in blue and simulation results in cyan. Both are obtained using the ‘cortical
slices’ parameter set (see Tab. S2). All transition probabilities are shown for the presentation of 75 spike-pairs.

Figure S5: Activity-dependent calcium amplitudes lead to BCM rule (Bienenstock et al. 1982). (A)
Values of Cpre and Cpost used in B are indicated by triangles with various colors (Cpre = Cpost =
0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6). All other parameters are kept constant (see Tab. S1). postsynaptic firing rates
(for simplicity fpre = fpost), for the values of pre- and postsynaptic calcium amplitudes indicated in A (same
color code). For low calcium amplitudes, the synapse model exhibits only LTD in the physiological range of
firing rates. Increasing the calcium amplitudes (Cpre = Cpost) leads to the appearance of LTP at high fre-
quencies, with a threshold between LTD and LTP that strongly depends on Cpre = Cpost. Therefore, adding
an activity dependence to the model, such that calcium amplitudes decrease when firing rates increase, would
naturally leads to a BCM-like rule. A similar behavior can be obtained if potentiation and depression thresholds
increase with firing rates.
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2 Supplementary Tables

Parameter unit DP-curve DPD-curve DPD’-curve P-curve D -curve D’-curve BCM-example
τCa ms 20 20 20 20 20 20 20
Cpre 1 0.9 1 2 0.6 1 varied
Cpost 2 0.9 2 2 0.6 2 varied
θd 1 1 1 1 1 1 1
θp 1.3 1.3 2.5 1.3 1.3 3.5 1.3
γd 200 250 50 160 500 60 200
γp 321.808 550 600 257.447 550 600 400
σ 2.8284 2.8284 2.8284 2.8284 5.6568 2.8284 2.8284
τ s 150 150 150 150 150 150 150
ρ? 0.5 0.5 0.5 0.5 0.5 0.5 0.5
D ms 13.7 4.6 2.2 0 0 0 0
β 0.5 0.5 0.5 0.5 0.5 0.5 0.5
b 5 5 5 5 5 5 5

Table S1: Parameters of the STDP curves depicted in Fig. 2C,D and the sliding threshold example in
Fig. S5. The calcium amplitudes (Cpre, Cpost) and the thresholds (θd, θp) define the locations in the θp-θd and
the Cpre- Cpost planes in Fig. 2C,D. The activation thresholds for all examples in the Cpre-Cpost plane (DP,
DPD, P and D, Fig. 2C) are θd = 1 and θp = 1.3. The calcium amplitudes for all examples in the θp-θd plane
(DPD’ and D’, Fig. 2D) are Cpre = 1 and Cpost = 2. γd, γp and σ are adjusted such that all examples yield
approximately similar magnitudes of synaptic changes. The time delay of the presynaptic calcium transient,D,
is adjusted such that the transition from depression to potentiation occurs at ∆t = 0 ms for the DP, DPD and
the DPD’ examples, D = 0 otherwise. For simplicity, τCa, τ , ρ?, β and b are kept the same for all examples.
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Parameter hippocampal slices hippocampal cultures cortical slices
(Wittenberg and Wang 2006) (Wang et al. 2005) (Sjöström et al. 2001)

Fig. 3, S10 Fig. S3, S10 Fig. 4, 5, S4
τCa (ms) 48.8373 11.9536 22.6936
Cpre 1 0.58156 0.5617539
Cpost 0.275865 1.76444 1.23964
θd 1 1 1
θp 1.3 1.3 1.3
γd 313.0965 61.141 331.909
γp 1645.59 113.6545 725.085
σ 9.1844 2.5654 3.3501

τ (sec) 688.355 33.7596 346.3615
ρ? 0.5 0.5 0.5

D (ms) 18.8008 10 4.6098
β 0.7 0.5 0.5
b 5.28145 36.0263 5.40988

Table S2: Parameters obtained from fitting the synapse model to experimental data. Values in bold were
prefixed and were not allowed to be optimized by the fitting routine (SI Materials and Methods).
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Parameter unit DPD’-curve DP-curve heterogeneous curve
(orange triangle) (magenta square) (gray shaded area)

τCa ms 20 20 20
Cpre 1 1 drawn
Cpost 1.3 2 drawn
θd 1 1 1
θp 1.3 1.3 1.3
γd 150 150 150
γp 310 241.356 adjusted
σ 2.8284 2.8284 2.8284
τ s 150 150 150
ρ? 0.5 0.5 0.5
D ms 4.3 13.8 adjusted
β 0.5 0.5 0.5
b 5 5 5

Table S3: Parameters of the examples for maximal calcium amplitude and direction of synaptic change
depicted in Fig. S1. We vary Cpre and Cpost to obtain qualitatively different STDP curves in the DPD’ and the
DP regions (Fig. S1A). γp and γd are adjusted to yield approximately equal LTP and LTD magnitudes across
the different cases. D is chosen such that the transition from LTD to LTP occurs at ∆t = 0 ms. For the
examples illustrating synaptic heterogeneity (Fig. S1B), we draw the pre- and postsynaptic calcium amplitudes
from a bivariate Gaussian distribution with means at (C̄pre = 1, C̄post = 1.5) and standard deviations (σpre =
0.15, σpost = 0.4). All other parameters are kept constant across the cases.
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Parameter unit min max
τCa ms 1 100
Cpre 0.1 20
Cpost 0.1 50
θd fixed
θp fixed
γd 5 5000
γp 5 2500
σ 0.35 70.7
τ s 2.5 2500
ρ? fixed
D ms 0 50
β fixed
b 1 100

Table S4: Parameter value ranges. When fitting the synapse model to the different experimental datasets
(‘hippocampal slices’ Wittenberg and Wang 2006, ‘hippocampal cultures’ Wang et al. 2005, and ‘cortical
slices’ Sjöström et al. 2001, we draw the initial parameter values from an uniform distribution within the
boundaries given here. After convergence to a minima of the gradient descent routine (see SI Materials and
Methods), we discard the fit result if the final parameter values lie outside those boundaries. We choose the
boundaries to assure that the parameter values lie in biological plausible ranges.
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3 Supplementary Materials and Methods

3.1 Calcium dynamics

We use two types of calcium models in this study. The simplified calcium model is used in the
whole paper, except in Section 3.1.2, where we investigate the more realistic nonlinear calcium
model.

3.1.1 Simplified calcium model

The postsynaptic calcium dynamics is described by

dc

dt
= − c

τCa
+ Cpre

∑
i

δ(t− ti −D) + Cpost

∑
j

δ(t− tj), (1)

where c is the total calcium concentration, τCa the calcium decay time constant, and Cpre, Cpost

the pre- and postsynaptically evoked calcium amplitudes. The sums go over all pre- and postsy-
naptic spikes occurring at times ti and tj , respectively. The time delay, D, between the presy-
naptic spike and the occurrence of the corresponding calcium transient (Fig. 1A) accounts for
the slow rise time of the NMDAR-mediated calcium influx (see SI section 3.1.2 below). In
practice, the delay is chosen such that the transition from LTD to LTP of the STDP curve oc-
curs at ∆t = 0 ms. This leads to delays in the range 0-25 ms. Without loss of generality,
we set the resting calcium concentration to zero, i.e., c0 = 0, and use dimensionless calcium
concentrations.

3.1.2 Nonlinear calcium model

We implement a more realistic calcium model (called in the following ‘nonlinear’ calcium
model) to account for the following properties of postsynaptic calcium dynamics: (i) calcium
transients mediated by NMDA receptors and VDCC have distinct dynamics. The NMDA medi-
ated transient has a slow rise and decay time, while the VDCC mediates a fast calcium transient
(Sabatini et al. 2002). (ii) Summation of pre and post transients is nonlinear when the post spike
occurs after the pre spike. Preceding presynaptic activation paired with postsynaptic depolar-
ization from the backpropagating action potential generates a large calcium influx through the
NMDA receptor (see Fig. S6A,C, Nevian and Sakmann 2006).

In the nonlinear model, calcium transients evoked by pre- and postsynaptic spikes are ac-
counted for by a difference of exponentials. Presynaptic calcium transients are described as

dA

dt
= Ã

(
− A

τ r
pre

+B

)
(2)

dB

dt
= − B

τd
pre

+
∑
i

δ(t− ti), (3)

where the sum goes over all presynaptic spikes occurring at times ti. τ r
pre and τd

pre are the rise
and the decay time constants of the calcium transient, respectively, τ r

pre = 10 ms and τd
pre = 30
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Figure S6: Synaptic changes induced by nonlinear and finite rise time calcium transients. (A) Calcium
transients evoked by a post-pre (blue line) and a pre-post spike-pair (red line). ∆t indicated in panel (Cpre = 1,
Cpost = 2.5. Note the nonlinear increase of the postsynaptically evoked calcium transient in case of a pre-post
spike-pair. The large calcium influx stems from the voltage-dependence of the NMDA receptor (Nevian and
Sakmann 2006, see SI Material and Methods for the ‘nonlinear’ calcium model). (B) Fraction of time spent
above the depression (turquoise line) and potentiation thresholds (orange, left-hand y-axis), and the average
asymptotic value of the synaptic efficacy (ρ̄, black, right-hand y-axis) as a function of ∆t. The two examples
from A are indicated by diamonds. (C) Maximal amplitude and nonlinearity of the calcium transient. The upper
panel compares the maximal amplitude of the full calcium trace (black line) with the maximal amplitude of the
expected linear sum of pre- and postsynaptically evoked calcium transient (green line). The lower panel depicts
the nonlinearity factor which is the peak calcium amplitude, normalized to the expected linear sum of pre- and
postsynaptically evoked transients. A nonlinearity factor of one (gray line) indicates linear summation. (D)
Change in synaptic strength generated by the nonlinear calcium model and with NMDA or VDCC blocked.
The analytically calculated change in synaptic strength shows a DP behavior (black line). Blocking NMDA
receptors (blue line, Cpre = 0) abolishes plasticity, and blocking VDCC (red line, Cpost = 0) preserves LTP
as seen in experiments (Bi and Poo 1998; Nevian and Sakmann 2006).
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ms (Sabatini et al. 2002). Ã is a scaling factor such that the maximal amplitude is given by Cpre,

Ã = Cpre

(
(1/τd

pre − 1/τ r
pre)

(
τ r
pre

τd
pre

1/(1−τ r
pre/τ

d
pre)
− τ r

pre

τd
pre

1/(τd
pre/τ

r
pre−1)

))−1

.

Postsynaptic calcium transients are given by

dE

dt
= Ẽ

(
− E

τ r
post

+ F

)
(4)

dF

dt
= − F

τd
post

+
∑
j

δ(t− tj) + η
∑
j

δ(t− tj) ·A, (5)

where the sum goes over all postsynaptic spikes occurring at times tj . τ r
post = 2 ms and

τd
post = 12 ms (Sabatini et al. 2002). η implements the increase of the NMDA mediated

current in case of coincident presynaptic activation and postsynaptic depolarization through
the backpropagating action potential. η determines by which amount the postsynaptically
evoked calcium transient is increased in case of preceding presynaptic stimulation, in which
case A 6= 0. D̃ is a scaling factor such that the maximal amplitude is given by Cpost,

Ẽ = Cpost

(
(1/τd

post − 1/τ r
post)

(
τ r
post

τd
post

1/(1−τ r
post/τ

d
post) − τ r

post

τd
post

1/(τd
post/τ

r
post−1)

))−1

.

The total calcium transient mediated by NMDA and VDCC activation is given by c = A+D.
See Fig. S6A for two example calcium traces generated by the model described here. Using η =
4 yields a maximal nonlinearity factor of about 2 consistent with data from Nevian and Sakmann
(2006) (Fig. S6C). Note that in contrast to the simplified calcium model, the presynaptically
evoked calcium transient is not delayed in the nonlinear model.

We show in Fig. S6D that the nonlinear calcium model in combination with the synapse
model described by Eq. [1] reproduce the ‘classical’ STDP curve, that is, depression for post-
pre and potentiation for pre-post pairs. The conditions to observe a DP curve with the nonlinear
calcium model are the same as in with the simplified calcium model, that is, the potentiation
threshold is larger than the depression threshold (θp > θd), the amplitude of the postsynaptic
calcium transient is larger than the potentiation threshold (Cpost > θp), and the amplitude of
the presynaptic transient is smaller than the potentiation threshold (Cpre < θp). Again, we
impose that spike-pairs with large time differences do not evoke synaptic changes. This is the
case if potentiation and depression evoked by a single postsynaptic spike cancel or nearly cancel
each other (see Fig. S6B,D where ρ̄ is not exactly 0.5 but no synaptic changes are induced
since changes in ρ are small and not sufficient to build up). As with the simplified calcium
model, these conditions yield the ‘classical’ STDP curve induced by nonlinear and finite rise
time calcium transients in response to spike-pairs (Fig. S6D).

Note that the finite rise time of the NMDA mediated calcium transient moves the transition
from LTD to LTP to ∆t ∼ 0 ms. In other words, the delay of the presynaptically evoked calcium
transient introduced in the simplified calcium model can be seen as an effective implementation
of the finite rise time of the NMDA-mediated calcium influx.

Importantly, the nonlinear synapse model reproduces the basic pharmacology of spike-pair
evoked STDP. Blocking NMDA receptors, which is implemented by Cpre = 0 in the model,
abolishes LTD and LTP, as in experiments (Bi and Poo 1998; Nevian and Sakmann 2006). Note
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that this NMDA dependence is also reproduced by the synapse model with simplified calcium
dynamics, in large parameter regions (DP region where Cpre < θd). In addition, in the nonlinear
model LTD is VDCC dependent, as in experiments (Bi and Poo 1998; Nevian and Sakmann
2006), whereas LTP is preserved for Cpost = 0 but with a smaller amplitude (Fig. S6D).

3.2 Analytical solution for transition probabilities

The behavior of the synapse model is governed by the fraction of time the calcium transient
spends above the potentiation and the depression thresholds. In a given protocol, the average
depression is given by γd times the fraction of time the calcium transient spends above θd, i.e.
Γd = γdαd, and likewise for potentiation. The average fraction of time spent above a given
threshold is

αx =
1

nT

∫ nT

0
Θ[c(t)− θx]dt, (6)

where nT refers to the duration of the stimulation protocol (n presentations at interval T ; x =
p, d). Analytical expressions for αp and αd for the stimulation protocols considered and the
simplified calcium model can be found below. For pre- and postsynaptic Poisson firing, the
amplitude distribution of the compound calcium trace can be calculated analytically (Gilbert
and Pollak 1960), which in turn allows us to calculate αp and αd also for that case (see below).

To compute the transition probabilities, we perform a ‘diffusion approximation’ of ρ. We
consider a periodic protocol, with a period T � τ . During a period T , we assume that the
calcium transient spends times of duration tp/td above the potentiation/depression thresholds,
respectively. Integrating Eq. (1) (in manuscript) over the interval [t, t + T ], and neglecting the
cubic term, we have

ρ(t+ T ) ∼ ρ(t) +
tpγp
τ

(1− ρ(t))− tdγd
τ
ρ(t) + σ

√
τp + τd
τ

z(t),

where z(t) is a Gaussian random variable of unit variance, or equivalently

ρ(t+ T ) ∼ ρ(t) +
T

τ
(αpγp(1− ρ(t))− αdγdρ(t)) + σ

√
T

τ

√
αp + αdz(t).

Hence, the conditional distribution Prob(ρ(t + T )|ρ(t)) is a Gaussian with a mean

(αpγp(1− ρ(t))− αdγdρ(t))T/τ and a SD σ
√

T
τ

√
αp + αd. This is the conditional distri-

bution of the stochastic process given by

τ
dρ

dt
= Γp(1− ρ)− Γdρ− ρ(1− ρ)(ρ? − ρ) + σ

√
τ
√
αp + αdη(t). (7)

Assuming γp and γd to be large allows us to neglect the cubic term, and turns equation (7) into
an Ornstein-Uhlenbeck process. In that case, Eq. (7) can be solved analytically using the Fokker-
Planck formalism (Risken 1996). The probability density function (pdf) of ρ is a time-dependent
Gaussian,

P (ρ, t|ρ0) =
1√

πσ2
ρ

(
1− e−2t/τeff

) exp

(
−
(
ρ− ρ̄+ (ρ̄− ρ0)e−t/τeff

)2
σ2
ρ

(
1− e−2t/τeff

) )
, (8)
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where ρ0 is the initial value of ρ at t = 0, which is 0 or 1 in this study depending on whether
the system is initially in the DOWN or the UP state, respectively. ρ̄ is the average value of ρ in
the limit of a very long protocol equivalent to the minimum of the quadratic potential during the
protocol, σρ is the standard deviation of ρ in the same limit, and τeff is the characteristic time
scale of the temporal evolution of the pdf of ρ,

ρ̄ =
Γp

Γp + Γd
, (9)

σ2
ρ =

σ2(αp + αd)

Γp + Γd
, (10)

τeff =
τ

Γp + Γd
. (11)

The integral of the pdf above or below the unstable fix-point, ρ?, at time nT , which marks
the end of the stimulation protocol, gives the probability that the system will converge to the
UP or the DOWN state. We denote the UP and the DOWN transition probabilities as U and D,
respectively. They are given by

U(ρ0) =

∫ ∞
ρ?

P (ρ, nT |ρ0)dρ (12)

=
1

2

1 + erf

−ρ? − ρ̄+ (ρ̄− ρ0)e−nT/τeff√
σ2
ρ

(
1− e−2nT/τeff

)
 , (13)

as well as

D(ρ0) =

∫ ρ?

−∞
P (ρ, nT |ρ0)dρ (14)

=
1

2

1− erf

−ρ? − ρ̄+ (ρ̄− ρ0)e−nT/τeff√
σ2
ρ

(
1− e−2nT/τeff

)
 . (15)

where erf refers to the standard Error Function, defined as erf(x) = 2√
π

∫ x
0 e
−t2dt.

3.3 No change in synaptic strength for spike-pairs with large time
differences

Single pre- and postsynaptic spikes do not induce any synaptic changes in the model in two
cases: (i) if they do not cross depression and potentiation thresholds (as for example in the
DPD and PDP regions in Fig. 2D), (ii) or if contributions from depression and potentiation
exactly cancel each other (as we impose in the DP and PD regions, for example). The latter
is assured if the position of the quadratic potential during stimulation is at ρ̄ = ρ? ≡ 0.5, or
in other words, if the temporal averages of the potentiation and the depression rates are equal:
Γp = γpαp = Γd = γdαd ⇒ ρ̄ = Γp/(Γp + Γd) = 0.5. That requirement determines the ratio
of the potentiation and the depression rate. Here, we demonstrate how to calculate that ratio
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for one example where only single postsynaptic calcium transients cross both thresholds (that is
Cpre < θd < θp < Cpost) and give the ratios for all other cases. Note that the condition ρ̄ = 0.5
cannot be satisfied if one of the thresholds is never reached by single calcium transients (e.g., D’
in Fig. 2C,D).

A single post-synaptic spike induces a calcium transient described by Cpost exp(−t/τCa)
in the simplified calcium model (see above). This transient crosses the depression threshold
for a fraction of time αd = τCa ln(Cpost/θd)/T , and the potentiation threshold for a shorter
fraction of time αp = τCa ln(Cpost/θp)/T , where T is the interval within which one spike-pair
is presented. To ensure that single post-synaptic spikes do not induce any synaptic changes, we
impose

γpαp = γdαd ⇒ γpτCa ln(Cpost/θp)/T − γdτCa ln(Cpost/θd)/T = 0, (16)

which determines the ratio of potentiation and depression rate to

γp/γd =
ln(Cpost/θd)

ln(Cpost/θp)
. (17)

That ratio of γp and γd ensures ρ̄ = 0.5 for large ∆t in case Cpre < θd < θp < Cpost.
The ratios of potentiation and depression rates for the other cases are given by

γp/γd =



arbitrary Cpre, Cpost < θd, θp,

ln(Cpost/θd)
ln(Cpost/θp) Cpre < θd < θp < Cpost,

ln(Cpost/θd)+ln(Cpre/θd)
ln(Cpost/θp) θd < Cpre < θp < Cpost,

ln(Cpost/θd)+ln(Cpre/θd)
ln(Cpost/θp)+ln(Cpre/θp) θd < θp < Cpre < Cpost.

(18)

The ratios are given for the conditions Cpre < Cpost and θd < θp but other cases can be derived
in an equivalent way. Note that the ratios here are given for the simplified calcium model (see
above).

3.4 Fraction of time spent above threshold for different stimulation
protocols

We give here the analytical expressions for the fraction of time spent above threshold for the
spike-pair, spike-triplet at low frequency, the spike-pair at varying frequencies and pre- and
postsynaptic Poisson firing protocols. As an example, we focus on one particular case of calcium
amplitudes and threshold, that is, Cpre < θ < Cpost. However, the expressions can be easily
generalized to any relationship between calcium amplitudes and thresholds.

The fraction of time spent above threshold can be calculated analytically for the simplified cal-
cium model. However, simple analytical expressions cannot be derived in the nonlinear model.
All results presented in this section are derived for the simplified calcium model.

The fractions of time spent above threshold are used to calculate synaptic changes analytically
in the model (see Methods section in manuscript). To simplify the expressions below, we rescale
time with respect to the calcium time constant τCa as t′ → t/τCa. Hence, both times and calcium
amplitudes are dimensionless variables in what follows.
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Figure S7: Single spike-pairs. Calcium transients for three different time differences, ∆t, illustrate the three
qualitatively different regions for calculating the fraction of time above threshold (see Eq. (21)). The parameters
in the example are Cpre = 0.8, Cpost = 2 and θ = 1 (red dashed line).

Single spike-pairs We first consider a pair of one presynaptic spike at time t = 0 and
one postsynaptic spike at time t = ∆t. In the post-pre case (∆t < 0), the postsynaptic spike
precedes the presynaptic spike and the calcium transient elicited by the spike-pair is given by

c(t) =


0 t < ∆t,
Cpost exp(∆t− t) t ∈ [∆t, 0],
exp(−t) (Cpost exp(∆t) + Cpre) t > 0.

(19)

When ∆t > 0, we have a pre-post pair, and

c(t) =


0 t < 0,
Cpre exp(−t) t ∈ [0,∆t],
exp(−t) (Cpre exp(∆t) + Cpost) t > ∆t.

(20)

Synaptic changes are potentially induced whenever c(t) crosses the depression-, the
potentiation-, or both thresholds. For Cpre < θ < Cpost, the fraction of time spent above a
given threshold θ is separated into three qualitatively different intervals (Fig. S7) and given by

αT =



I ln(Cpost/θ)
for ∆t < ln((θ − Cpre)/Cpost),

II ln(Cpost/θ) + ln((Cpost exp(∆t) + Cpre)/θ)
for ∆t ∈ [ln((θ − Cpre)/Cpost), ln(θ/Cpost)],

III ln(Cpost/θ) + ln((Cpost exp(∆t) + Cpre)/(Cpost exp(∆t)))
for ∆t > ln(θ/Cpost).

(21)

T is the interval within which one spike-pair is presented.

Single spike-triplets The triplet cases investigated in that study involve either two presy-
naptic spikes paired with a postsynaptic one, or one presynaptic spike paired with two postsynap-
tic spikes. Note that the latter also accounts for the pre-spike with post-burst pairing as utilized
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Figure S8: Single spike-triplets. (A) Pre-post-pre triplets yield three qualitatively different regions with re-
spect to the calculation of the time spent above threshold (see Eq. (27)). The analytical expression for the points
A-E are given in Eqs. (22)-(26). (B) Post-pre-post triplets yield five qualitatively different regions with respect
to the calculation of the time spent above threshold (see Eq. (33)). The analytical expression for the points J-N
are given in Eqs. (28)-(32). (C) The ∆t1-∆t2 space is separated into six different regions with respect to the
occurrence of pre- and postsynaptic spikes. The pre-post-pre quadrant (upper left) is furthermore divided into
three different regions, I, II, and III, with respect to the calculation of α (illustrated in A). The post-pre-post
quadrant (lower right) is divided into five different regions, I-V, with respect to the calculations of α (illustrated
in B). The colored lines mark the points where the tops and foots of the calcium transients hit the threshold θ
(as marked in panel). Those points mark the boundaries between the different regions for the calculation of α.
The parameters in the given example are Cpre = 0.8, Cpost = 2 and θ = 1 (red dashed lines).
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in Wittenberg and Wang (2006). In triplets, the single spike is used as a reference and ∆t1 is
the time difference to the first other spike and ∆t2 the time difference to the second other spike
with respect to the reference spike. Spike-triplets can be separated into six different regions with
respect to the temporal order of spikes: (i) pre-pre-post, (ii) pre-post-pre, (iii) post-pre-pre, (iv)
post-post-pre, (v) post-pre-post, and (vi) pre-post-post, where the former three are triplets with
two presynaptic- and one postsynaptic spike and vice versa for the latter three (Fig. S3D). See
Fig. S3D for the convention of the sign for ∆t1 and ∆t2 with respect to the spike order. Here,
we illustrate the calculation of the fraction of time spent above threshold for the pre-post-pre
and the post-pre-post examples, the other spike-triplet cases and the α’s for spike-quadruplets
can be calculated accordingly.

For pre-post-pre triplets, let us call A/B the values of the calcium amplitude at the foot of the
second and the third transient, and C/D/E the values of the calcium amplitude at the top of the
first, the second and the third transient (Fig. S8A). Those values are given by

A = Cpre exp(−|∆t1|)), (22)

B = Cpre exp(−(|∆t1|+ |∆t2|)) + Cpost exp(−|∆t2|), (23)

C = Cpre, (24)

D = A+ Cpost, (25)

E = B + Cpre. (26)

For Cpre < θ < Cpost, the fraction of time spent above a given threshold θ is separated into
three qualitatively different intervals (Fig. S8A,C) and given by

αT =



I ln(D/θ)

for |∆t2| > ln
(
Cpost+Cpre exp(−|∆t1|)

θ−Cpre

)
,

II ln(D/θ) + ln(E/θ)

for |∆t2| ∈ [ln
(
Cpost+Cpre exp(−|∆t1|)

θ

)
, ln
(
Cpost+Cpre exp(−|∆t1|)

θ−Cpre

)
],

III ln(E/θ) + |∆t2|
for |∆t2| ≤ ln

(
Cpost+Cpre exp(−|∆t1|)

θ

)
.

(27)
For post-pre-post triplets, let us call J/K the values of the calcium amplitude at the foot of the

second and the third transient, and L/M/N the values of the calcium amplitude at the top of the
first, the second and the third transient (Fig. S8B). Those values are given by

J = Cpost exp(−|∆t1|)), (28)

K = Cpost exp(−(|∆t1|+ |∆t2|)) + Cpre exp(−|∆t2|), (29)

L = Cpost, (30)

M = J + Cpre, (31)

N = K + Cpost. (32)

For Cpre < θ < Cpost, the fraction of time spent above a given threshold θ is separated into five
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qualitatively different intervals (Fig. S8B,C) and given by

αT =



I ln(L/θ) + ln(N/θ)

for |∆t1| > ln
(

Cpost

θ−Cpre

)
,

II ln(L/θ) + ln(M/θ) + ln(N/θ)

for |∆t1| ∈ [ln
(
Cpost

θ

)
, ln
(

Cpost

θ−Cpre

)
]

and |∆t2| > ln
(
Cpost exp(−|∆t1|)+Cpre

θ

)
,

III ln(M/θ) + |∆t1|+ ln(N/θ)

for |∆t1| ≤ ln
(
Cpost

θ

)
and |∆t2| > ln

(
Cpost exp(−|∆t1|)+Cpre

θ

)
,

IV ln(L/θ) + ln(N/θ) + |∆t2|
for |∆t1| > ln

(
Cpost

θ

)
and |∆t2| ≤ ln

(
Cpost exp(−|∆t1|)+Cpre

θ

)
,

V ln(N/θ) + |∆t1|+ |∆t2|
for |∆t1| ≤ ln

(
Cpost

θ

)
and |∆t2| ≤ ln

(
Cpost exp(−|∆t1|)+Cpre

θ

)
.

(33)

T is the interval within which one spike-triplet is presented.

Spike-pairs at frequency f We now consider the case where spike-pairs are repeatedly
presented at a given frequency f (Sjöström et al. 2001). In contrast to single spike-pairs, cal-
cium transients from successive spike pairs start to interact with each other at sufficiently high
frequencies. Note that the time difference should always be smaller than the interval within
which one spike pair is presented, i.e., ∆t < T = 1/f .

Here, we separately consider the post-pre and pre-post cases, that is, ∆t < 0 and ∆t > 0. For
post-pre pairs, let us call B/C the values of the calcium amplitude at the foot of the post/pre-
synaptic transient, and D/E the values of the calcium amplitude at the top of the post/pre-
synaptic transient (Fig. S9A). We have, for ∆t < 0,

B = (A(f)− 1)(Cpost + Cpre exp(−∆t)), (34)

C = CpostA(f) exp(∆t) + (A(f)− 1)Cpre, (35)

D = A(f)Cpost + (A(f)− 1)Cpre exp(−∆t), (36)

E = A(f)(Cpost exp(∆t) + Cpre), (37)

where
A(f) =

1

1− exp(−1/f)
, (38)

represents the peak calcium concentration, which increases with f due to summation of calcium
transients induced by successive spike-pairs.
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Figure S9: Spike-pairs vs frequency f . (A) There are in total five different regions with respect to the
calculation of the fraction of time spent above threshold for post-pre pairs and varying presentation frequencies
f (see also C and Eqs. (39)). For ∆t = −0.5, the two different cases are illustrated. The analytical expressions
for B-E are given in Eqs. (34)-(37). (B) Again, there exist in total five different regions with respect to the
calculation of the fraction of time spent above threshold for pre-post pairs vs f (see also C and Eqs. (44)).
Spike-pairs with ∆t = 0.5 cover four of them which are illustrated here. The analytical expressions for J-M
are given in Eqs. (40)-(43). (C) The f -∆t space is divided in post-pre (∆t < 0) and pre-post (∆t > 0) regions,
which are each further subdivided into five qualitatively different regions with respect to the calculation of α
(Eqs. (39) and (44)). The colored lines mark the points where the tops and foots of the calcium transients hit
the threshold θ (as marked in panel). Those points mark the boundaries between the five different regions for
post-pre- and pre-post pairs. The space is restricted by the fact that ∆t should be smaller than one presentation
cycle, that is, |∆t| < 1/f (gray shaded regions). The gray dashed lines mark the examples ∆t = −0.5 and
0.5 from A and B, respectively. The parameters in the given example are Cpre = 0.8, Cpost = 2 and θ = 1
(red dashed line).
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For post-pre pairs and Cpre < θ < Cpost, the fraction of time spent above a given threshold θ
is separated into five qualitatively different intervals (Fig. S9C) and given by

αT =



I ln(D/θ)
for f<− ln(1−(Cpost exp(∆t)+Cpre)/θ)−1,

II ln(D/θ) + ln(E/θ)
for f∈[− ln(1−(Cpost exp(∆t)+Cpre)/(θ+Cpre))−1,− ln(1−(Cpost exp(∆t)+Cpre)/θ)−1]

and f<− ln(1−(Cpost+Cpre exp(−∆t))/(θ+Cpost+Cpre exp(−∆t)))−1,
III ln(E/θ) + |∆t|

for f>− ln(1−(Cpost exp(∆t)+Cpre)/(θ+Cpre))−1

and f<− ln(1−(Cpost+Cpre exp(−∆t))/(θ+Cpost+Cpre exp(−∆t)))−1,
IV ln(D/θ) + 1/f − |∆t|

for f∈[− ln(1−(Cpost exp(∆t)+Cpre)/(θ+Cpre))−1,− ln(1−(Cpost exp(∆t)+Cpre)/θ)−1]

and f>− ln(1−(Cpost+Cpre exp(−∆t))/(θ+Cpost+Cpre exp(−∆t)))−1,
V 1/f

for f>− ln(1−(Cpost exp(∆t)+Cpre)/(θ+Cpre))−1

and f>− ln(1−(Cpost+Cpre exp(−∆t))/(θ+Cpost+Cpre exp(−∆t)))−1.
(39)

For pre-post pairs, let us call J/K the values of the calcium amplitude at the foot of the
pre/post-synaptic transient, and L/M the values of the calcium amplitude at the top of the
pre/post-synaptic transient (Fig. S9B). We have, for ∆t > 0,

J = (A(f)− 1)(Cpost exp(∆t) + Cpre), (40)

K = (A(f)− 1)Cpost +A(f)Cpre exp(−∆t)), (41)

L = (A(f)− 1)Cpost exp(∆t) +A(f)Cpre, (42)

M = A(f)(Cpost + Cpre exp(−∆t)). (43)

For pre-post pairs and Cpre < θ < Cpost, the fraction of time spent above a given threshold θ
is also separated into five qualitatively different intervals (Fig. S9C) and given by

αT =



I ln(M/θ)
for f<− ln(1−(Cpost exp(∆t)+Cpre)/(θ+Cpost exp(∆t)))−1,

II ln(L/θ) + ln(M/θ)
for f∈[− ln(1−(Cpost exp(∆t)+Cpre)/(θ+Cpost exp(∆t)))−1

− ln(1−(Cpost+Cpre exp(−∆t))/(θ+Cpost))
−1]

and f<− ln(1−(Cpost exp(∆t)+Cpre)/(θ+Cpost exp(∆t)+Cpre))−1,
III ln(M/θ) + |∆t|

for f>− ln(1−(Cpost+Cpre exp(−∆t))/(θ+Cpost))
−1]

and f<− ln(1−(Cpost exp(∆t)+Cpre)/(θ+Cpost exp(∆t)+Cpre))−1,
IV ln(L/θ) + 1/f − |∆t|

for f∈[− ln(1−(Cpost exp(∆t)+Cpre)/(θ+Cpost exp(∆t)))−1

− ln(1−(Cpost+Cpre exp(−∆t))/(θ+Cpost))
−1]

and f>− ln(1−(Cpost exp(∆t)+Cpre)/(θ+Cpost exp(∆t)+Cpre))−1,
V 1/f

for f>− ln(1−(Cpost+Cpre exp(−∆t))/(θ+Cpost))
−1]

and f>− ln(1−(Cpost exp(∆t)+Cpre)/(θ+Cpost exp(∆t)+Cpre))−1.

(44)
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Figure S10: Dependence of plasticity on pre- and postsynaptic firing rates when both neurons fire as
Poisson processes. (A) Example of a compound calcium transient (1 sec) evoked by pre- and postsynaptic
Poisson firing at 10 Hz. (B) The individual pre- (red) and postsynaptically (gray) evoked distributions of cal-
cium amplitudes resulting from Poisson firing at 10 Hz fall off sharply beyond the pre- and the postsynaptically
evoked calcium amplitudes Cpre = 0.921 and Cpost = 1.693, respectively. The amplitude distribution of the
compound calcium trace (blue) is the convolution of the individual amplitude distributions (analytical result in
blue and simulation results in cyan). (C,D) The change in synaptic strength (analytical results) in response to
Poisson stimulation is shown for all combinations of pre- and postsynaptic rates for the ‘hippocampal cultures’
(C) and the ‘hippocampal slices’ (D) parameter sets (see Tab. S2). All results are induced by a stimulation
lasting 10 sec.

T = 1/f is the interval within which one spike-triplet is presented.

3.5 Pre- and postsynaptic Poisson firing

Most stimulation protocols utilize deterministic spike trains. These firing patterns are at odds
with experimentally recorded spike trains in vivo, which show a pronounced temporal variability,
similar to a Poisson process. We therefore investigated the behavior of the model in response to
uncorrelated Poisson spike trains of pre- and postsynaptic neurons (Fig. S10A).

The amplitude distribution of a shot noise process, that is, a superposition of impulses occur-
ring at random Poisson distributed times, can be calculated analytically for various shapes, F (t),
of the impulses (Gilbert and Pollak 1960). In the simplified calcium model, the shape function
takes the form F (t) = exp(−t) (with normalized amplitude and rescaled time constant). We
illustrate here shortly how to calculate the amplitude distribution for a single Poisson process
(e.g., pre- or presynaptic).

For a single Poisson process, the calcium amplitude density function, P (c) is given in the
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interval 0 ≤ c < 1 by
P (c) = κcf−1. (45)

where f is the frequency of the Poisson process and κ is given by

κ =
exp(−fγ)

Γ(f)
, (46)

where γ = 0.57721... is Euler’s constant and Γ(f) the Gamma function.
The amplitude density function is given by an integral form for calcium amplitudes 1 ≤ c

P (c) = cf−1

[
κ− f

∫ c

1
P (x− 1)x−fdx

]
. (47)

Note that this equation has to be solved iteratively. That means that we can determine P (c) for
n ≤ c < n+ 1 from the knowledge of P (c) for n− 1 ≤ c < n (see Gilbert and Pollak 1960 for
more details).

The amplitude distribution induced by independent pre- and postsynaptic firing at rates fpre

and fpost and with calcium amplitudesCpre andCpost is simply the convolution of the individual
amplitude distributions (Gilbert and Pollak 1960) (see Fig. S10B). In turn, the integral of the
compound amplitude distribution above θd and θp yields αd and αp, respectively, and in turn the
changes in synaptic strength as a function of pre- and postsynaptic firing rates fpre and fpost. As
in the case of deterministic protocols, we find that many qualitatively distinct types of behaviors
can be obtained, depending on parameters. In Fig. 4C,D and Fig. S10, we focus on the three
types of behaviors produced by the parameter sets that fit the three experiments described in the
main text: ‘hippocampal cultures’ (Wang et al. 2005), ‘hippocampal slices’ (Wittenberg and
Wang 2006), and ‘cortical slices’ (Sjöström et al. 2001).

The synapse model predicts that pre-and postsynaptic firing contribute in a similar way to
synaptic efficacy changes in the cortex: No change for low pre and post rates, LTD for interme-
diate rates, and LTP for high rates (Fig. 4C,D). Due to the amplitude difference (Cpost > Cpre),
this behavior emerges at lower postsynaptic rates compared to presynaptic rates. In contrast,
parameters fitting the hippocampal culture experiments lead to a completely different prediction
for the dependence on pre and post firing. LTD is obtained for high presynaptic firing and low
postsynaptic firing rates, whereas LTP occurs for large postsynaptic firing rates (Fig. S10C).
This is again due to the imbalance between the amplitudes of the pre-and post-synaptically trig-
gered calcium transients. Finally, parameters fitting the hippocampal slice experiments lead to
qualitatively similar results as the visual cortex experiments at large pre and/or post rates, but
yield no changes at low pre-post rates (Fig. S10D). This is due to the fact that the potentiation
rate is much larger in hippocampal slices (see Tab. S2).

3.6 Synaptic Strength, Change in Synaptic Strength, and Simulations

We assume the synaptic strength is linearly related to ρ as w = w0 + ρ(w1 −w0), where w0/w1

is the synaptic strength of the DOWN/UP state. Synaptic strength as used here is typically
measured in experiments as the excitatory postsynaptic potential (EPSP)/excitatory postsynaptic
current (EPSC) amplitude, the initial EPSP slope, or the current in a 2-ms window at the peak of
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the EPSC. We assume that, before a stimulation protocol, a fraction β of the synapses is in the
DOWN state. The average initial synaptic strength is, therefore, equal to βw0 +[1−β]w1. After
the stimulation protocol, the average synaptic strength is w0[(1−U)β +D(1− β)] +w1[Uβ +
(1 − D)(1 − β)]. As in experiments, we consider the change in synaptic strength as the ratio
between the average synaptic strengths after and before the stimulation (i.e., [(1−U)β+D(1−
β)] + (b[Uβ + (1 − D)(1 − β)])/(β + [1 − β]b), where b = w1/w0). The average changes in
synaptic strength were obtained by repeating simulations of the full model (Eq. 1) 1,000 times
with identical model parameters but different random number generator seeds for the Gaussian
white noise process.

3.7 Fitting the synapse model to experimental data, parameter choices

To fit hippocampal slice data (Wittenberg and Wang 2006), we include all three datasets into the
cost function to be minimized (Fig. 3B, D, and E). To fit hippocampal culture results (Wang et al.
2005), we used the spike triplet as well as the quadruplet datasets to fit the parameters (Fig. S3C
and E) and predict the spike pair data (Fig. S3F). To fit cortical slice results (Sjöström et al.
2001), only the data for regular spike pair presentations are taken into account (Fig. 4A). Here,
jittered spike pair stimulations are qualitatively accounted for by the model without additional
fitting (Fig. S4). The fitted parameters are shown in Table S2.

We define the goodness of the fit to the experimental data by a cost function which is the sum
of all squared distances between data points and the analytical solution of the model. We draw
the initial parameter values from a uniform distribution and use the Powell method of gradient
descent to search for the minimum of the cost function (Press 2002). Parameter sets are rejected
if the final values lie outside biologically realistic values (ranges given in Tab. S4). Note that
different initial conditions lead to a diversity of parameter sets (Fig. S2), showing that the cost
function is essentially flat close to its minima in parameter space. We furthermore included
two terms in the cost function which assured that synaptic changes induced by single calcium
transients are small (γp, γd ∼ 50), and that synaptic changes are slow compared to the calcium
dynamics (τ � 1 sec).

To better compare fit results obtained from different experimental data sets, we chose to fix the
potentiation and depression thresholds, θp and θd. That allowed us to project all results onto the
same Cpre-Cpost plane (Fig. S2). Note that θp > θd is consistent with (O’Connor et al. 2005)
showing that blocking kinases reveals LTD for a protocol inducing LTP otherwise. Also, the
unstable fix point, ρ?, and the fraction of synapses initially in the DOWN state, β, were fixed.
Allowing θp, θd, ρ? and β to be optimized by the fit routine did not considerably improve the
match with experimental data. All other parameters are free parameters optimized during the fit
(see Tab. S2).
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